Boydwise2555

Z Iurium Wiki

The selected strains, L. plantarum KU985433 and L. rhamnosus KU985436 produced two different bacteriocins as detected by gel permeation chromatography with good antimicrobial activities. In vivo study demonstrated that feeding Westar rats with fermented milk exhibited greater cholesterol, LDL and blood triglyceride reduction for both strains. Whereas, HDL was increased by about 43 and 38%, respectively, and the atherogenic indices decreased.We demonstrated a strategy to prepare different types of 3-D nanofibrous polymeric gels, including hydro-, aero-, and oleogels by nonsolvent-induced phase separation (NIPS). NIPS-derived gel monoliths of poly(3-hydroxybutyrate) (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) blends were converted into hydrogels and aerogels by solvent exchange and freeze-drying, respectively. The high hydrophobicity and porosity of the nanofibrous PHB/PHBV aerogels enabled them to absorb various oils and swell to 20-30 times their own weight. The pseudo-second-order model was successfully used to describe the oil absorption behavior, and the obtained absorption rate constant increased with increasing PHBV content. The oil-swollen aerogels were highly elastic, thereby indicating that NIPS-derived aerogels are an excellent template for the fabrication of oleogels. With an increase in the PHBV ratio, the gels exhibited reduced modulus and collapse strength but increased collapse strain, thereby revealing higher ductility by compression. The rapid separation and re-binding of the liquid phase entrapped in the nanofiber network resulted in the unique thixotropic properties of the hydro- and oleogels. Indomethacin, a hydrophobic model drug, was successfully incorporated into injectable self-healing oleogels containing soybean oil and aerogels. These gels exhibited excellent cytocompatibility, and a better sustained drug release was observed for the oleogels compared to the aerogels.Electrosprayed zein nanoparticles containing 10% (w/w) of clove essential oil (CEO) were prepared and then with different levels (5, 10, and 15% w/w) in the starch matrix were used. The incorporation of zein nanoparticles in the structure of starch-based bio-nanocomposites films was confirmed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Increasing the level of application of zein bio-nanofillers in the starch film matrix increased thickness and contact angle. However, the use of electrosprayed zein nanoparticles loaded by CEO (EZN-CEO) up to 10% significantly (p less then 0.05) reduced the water vapor permeability (WVP), but using 15% of the nanoparticles increased the WVP of the films significantly (p less then 0.05). Increasing the EZN-CEO up to 10% significantly (p less then 0.05) increased the tensile strength and Young's modulus and reduced the elongation at break of the films. this website Sustained release of CEO from the bio-nanocomposites showed that the most release of the CEO occurs in 10% ethanol medium. The Fickian diffusion was the predominant mechanism in the release of the CEO, and the Peleg model was selected as the best one to explain the release behavior. The structures designed in this study can be used as an edible coating and bio-preservative in perishable food products.Desiccation tolerance (DT) is gradually lost during seed germination, while it can be re-established by pre-treatment with polyethylene glycol (PEG) and/or abscisic acid (ABA). Increasing knowledge is available on several stress-related proteins in DT re-establishment in herb seeds, but limited information exists on novel proteins in wood seeds. This study aimed to investigate the role of metallothionein CkMT4, a protein species with the highest fold increase in abundance in Caragana korshinskii seeds on PEG treatment. The fluctuation in mRNA levels of CkMT4 during seed development was consistent with the changes in DT, and the expression of CkMT4 could be up-regulated by ABA. Besides metal-binding capacity, CkMT4 might supply Cu2+/Zn2+ to superoxide dismutase (SOD) under high redox potential provided by PEG treatment for excess reactive oxygen species (ROS) scavenging. The overexpression of CkMT4 in yeast results in enhanced oxidation resistance. Experimentally, this study demonstrated the overexpression of CkMT4 in Arabidopsis seeds benefited the re-establishment of DT and enhanced the activity of SOD. On the whole, these findings suggested that CkMT4 facilitated the re-establishment of DT in C. korshinskii seeds mainly through diminishing excess ROS, which put the mechanism underlying the re-establishment of DT in xerophytic wood seeds into a new perspective.Noble metal-based catalytic material with maximum utilization is of prime attraction for conserving rare metal resources. Herein, highly dispersion Ni nanoparticles (NPs)-modified N-doped mesoporous carbon material (Ni-N@C) was fabricated by pyrolysis of Ni2+/Histidine cross-linked alginate hydrogels. In a step forward, the obtained Ni-N@C nanocatalyst was treated by the solution of Pd2+, and tiny amount of Pd NPs were deposited on the surface of Ni via the reducibility of Ni to achieve the high dispersion of precious metals material. In the degradation of highly-concentration p-nitrophenol, the catalyst presents excellent performance which could completely degrade pollutants within a very short period. It was demonstrated that pre-embedded Ni NPs could not only increase the efficiency of Pd NPs but also endow the facile separation characteristic to the catalyst. Besides, the catalyst maintained favorable catalytic capacity even after five reaction cycles. In brief, this work may provide novel guidance for the maximum utilization of noble metal-modified mesoporous N-doped carbon-supported catalysts in practical applications of industrial and the treatment highly-concentration p-nitrophenol.The genes involved in costunolide biosynthesis in Saussurea lappa have been identified recently by our lab. However, the study of transcriptional regulators of these genes was lacking for better opportunities for engineering the pharmacologically important biosynthetic pathway. Therefore, we cloned the promoter region of diphosphomevalonate decarboxylase gene (DPD) and analyzed its cis-acting regulatory elements to reveal the potential transcription factor (TF) binding sites for Dof, bHLH and WRKY family proteins in the gene promoter. The transcriptome study approach followed by the hidden Markov model based search, digital gene expression, co-expression network analysis, conserved domain properties and evolutionary analyses were carried out to screen out seven putative TFs for the DPD-TF interaction studies. Yeast one-hybrid assays were performed and three TFs were reported, namely, SlDOF2, SlbHLH3 and SlWRKY2 from Dof, bHLH and WRKY families, respectively that interacted positively with the DPD gene of the costunolide biosynthetic pathway.

Autoři článku: Boydwise2555 (Bright Floyd)