Boothknox3507

Z Iurium Wiki

Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.In recent years, Klebsiella pneumoniae has caused an increase in the number of serious infections associated with pneumonia, septicemia, urinary tract infections, and pyogenic liver abscess. In this study, a phage P929, isolated from hospital sewage in Jiangsu, could specifically infect K. pneumoniae KL19 capsular type by forming plaques with a translucent halo that expanded over time. Phage P929 with a multiplicity of infection (MOI) of 0.1 produced the highest phage titer. According to a one-step growth curve experiment, the latent time period of phage P929 was 25 min, and the burst size was about 156 phage particles/cell. The sensitivity tests confirmed that P929 was stable at temperatures ranging from 4 to 50 °C and pH 3 to 11. Based on morphological observation and phylogenetic analysis, phage P929 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae in the family Autographiviridae. According to genome analysis, phage P929 was 44,764 bp in size with 53.66% G + C content, encoding 57 proteins or coding sequences (117-3699 bp in length). Phage P929 showed potential antibacterial activity on planktonic cells and biofilm. After 120 min, the OD600 values of five phage-treated groups were basically reached zero compared to the untreated group, and the antibacterial activity of P929 was still detectable within 390 min. In anti-biofilm tests, phage P929 at an MOI of 1 significantly reduced the biofilm formation of K. pneumoniae in 48 h. These results suggest that phage P929 may be used to treat carbapenem-resistant and biofilm-forming K. pneumonia in clinical settings.Stenotrophomonas maltophilia (S. maltophilia) is an important Gram-negative opportunistic pathogen that is widely distributed in nature. S. maltophilia is highly drug-resistant because of its intrinsic properties and acquired drug resistance involving multiple molecular mechanisms, which creates a critical situation for infection therapy. Hence, there is an urgent need for alternative antimicrobial strategies to combat S. maltophilia. Herein, a novel S. maltophilia bacteriophage (phage) in family Podoviridae, named BUCT598, was isolated from hospital sewage and characterized to evaluate its potential as an antibacterial agent. The one-step growth curve showed that its latent period and burst size were approximately 30 min and 165 PFU/cell, respectively. Furthermore, phage BUCT598 survived within an extremely broad pH range (1-11), indicating its outstanding tolerance to both extremely acidic and extremely alkaline conditions. The whole-genome sequence of phage BUCT598 showed that it was a linear double-stranded DNA genome of 43,581 bp and 60% GC content. We identified 55 putative gene products involved in DNA replication, packaging, structure, and cell lysis. click here Whole-genome sequence comparisons among closely related phages indicated that phage BUCT598 had the highest sequence similarity with S. maltophilia phage BUCT609, with 52% query coverage and 76.40% identity, suggesting that it is a novel phage. Our findings indicate the great potential of phage BUCT598 as an alternative antimicrobial agent to eliminate S. maltophilia, and provide additional evidence that will help to understand how phages adapt and evolve under extreme environmental conditions, thereby opening up more extensive biotechnology applications of phages.Abnormal and dysregulated neuroinflammation has been linked to many neurological disorders and neurodegenerative diseases. Understanding the mechanisms of neuroinflammation, their impact on neurodevelopment and how neuroinflammation might be modulated, are currently considered to be critical to improving neurological treatment. ReNcell CX (originating from the cortical region) and VM (originating from the ventral mesencephalon) are human immortalised neural stem cell lines, that have the potential to be used as experimental models for investigating neuroinflammation in vitro. However, the information on the inflammation response of these cells is limited. This is especially more so for undifferentiated ReNcells. In this report we demonstrate using ELISA that cultured, undifferentiated ReNcell CX and VM produce significant amounts of IL-6 in response to IL-1β treatment, but not to LPS treatment. Additionally, conventional RT-PCR showed that ReNcell CX cells expressed TNFR1 and NF-κB, whereas ReNcell VM expressed only NF-κB. Our results encourage further investigation into the relationship between 1L-1β and IL-6 in both ReNcell CX and VM. Moreover, TNF-α treatment might potentially affect neuroinflammation in ReNcell CX, while activation of the NF-κB pathway could also play a critical part in neuroinflammation.The low diversity in marine mammal major histocompatibility complex (MHC) appears to support the hypothesis of reduced pathogen selective pressure in aquatic systems compared to terrestrial environments. However, the lack of characterization of the aquatic and evolutionarily distant Sirenia precludes drawing more generalized conclusions. Therefore, we aimed to characterize the MHC DQB diversity of two manatee species and compare it with those reported for marine mammals. Our results identified 12 and 6 alleles in T. inunguis and T. manatus, respectively. Alleles show high rates of nonsynonymous substitutions, suggesting loci are evolving under positive selection. Among aquatic mammals, Pinnipeda DQB had smaller numbers of alleles, higher synonymous substitution rate, and a dN/dS ratio closer to 1, suggesting it may be evolving under more relaxed selection compared to fully aquatic mammals. This contradicts one of the predictions of the hypothesis that aquatic environments impose reduced pathogen pressure to mammalian immune system. These results suggest that the unique evolutionary trajectories of mammalian MHC may impose challenges in drawing ecoevolutionary conclusions from comparisons across distant vertebrate lineages.Understanding immunity in wildlife populations is important from both One Health and conservation perspectives. The constitutive innate immune system is the first line of defence against pathogens, and comparisons among taxa can test the impact of evolution and life history on immune function. We investigated serum bacterial killing ability (BKA) of five marsupial species that employ varying life history strategies, demonstrated to influence immunity in other vertebrates. The brushtail possum and eastern grey kangaroo had the greatest BKA, while ringtail possums and koalas had the least. These differences were independent of social structure, captivity status and phylogeny, but were associated with diet and body size. Sex and disease status had no effect on BKA in koalas, however potential for differences between wild and captive koalas warrants further investigation. The current study has provided a foundation for future investigations into how adaptive and innate immunity interact in marsupials from an eco-evolutionary perspective.The scavenger receptors (SRs) gene family, as one of pattern recognition receptors, participates in the innate immune response in diverse lineages. However, the systematic identification, characteristics and functions of SRs family are lacking in teleost. Here, we identified all 19 SRs family members in Japanese flounder (Paralichthys olivaceus) based on the genome and transcriptome data. Phylogenetic and Ka/Ks analysis demonstrated that these SRs genes were divided into five classes and all exhibited pronounced purified selection pressures. Whole genome duplication event was found in colec12, scarb2, and lamp1. Gene structure, functional domain and motif distribution analyses indicated that SRs within the different subfamilies are severely conservative. SRs genes showed diverse expression patterns in the embryogenesis and unchanged tissues. The regulations of 14 SRs genes in blood, gill and kidney after E. tarda infection suggested their roles in innate immune response. Meanwhile, ten SRs genes were differentially expressed after E. tarda stimulation in macrophages in vitro. Then we proved that PoSCARA3 could suppress the activity of NF-κB and AP-1 in HEK 293T cells by dual-luciferase assays. In summary, this study provided valuable basis for further functional characterization and immune functions of SRs genes in P. olivaceus.

To examine the biofilm modulatory effect of arginine (Arg)-fluoride (F) varnish on multi-species biofilms.

Experimental varnishes were prepared by incorporating L-Arg (1, 2, and 4%) in 5% NaF varnish, which served as the control. Multi-species biofilms comprising Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii were grown on hydroxyapatite (HA) discs and treated with the Arg and F released from the experimental and control groups. The HA discs with treated biofilms were examined for biofilm composition. The biofilm thickness and live/dead counts were investigated using confocal microscopic imaging, while biofilm polysaccharides, proteins, and extracellular DNA (eDNA) were assessed spectrophotometrically. Bacterial composition in biofilms was analysed using viability real-time quantitative polymerase chain reaction (qPCR). The relative gene expression (RGE) was determined for gtfB, SMU.150, nlmD, arcA, and sagP.

Both the 2 and 4% Arg-NaF groups reduced biofilm thickness, with the 4% Arg-NaF group showing a significantly greater proportion of dead bacteria, followed by 1 and 2% Arg-NaF (p<0.001). All Arg-NaF groups significantly reduced the carbohydrate content of the biofilm, while the 4% Arg-NaF-treated biofilms demonstrated higher concentration of eDNA and proteins compared to the control NaF (p<0.001). Expression of gtfB, SMU.150, and nlmD were significantly downregulated in 4% Arg-NaF-treated biofilms; while 2% Arg-NaF enhanced the expression of arcA. Both 2% Arg-NaF and 4% Arg-NaF significantly increased the expression of sagP.

The incorporation of L-arginine (2%/4%) enhances the biofilm modulatory effect of 5% NaF varnish through released Arg and F.

The study results indicate that Arg-F varnish (at 2%/4% w/v. Arg) has the potential to modulate cariogenic biofilms in high-risk individuals.

The study results indicate that Arg-F varnish (at 2%/4% w/v. Arg) has the potential to modulate cariogenic biofilms in high-risk individuals.

Autoři článku: Boothknox3507 (Djurhuus Kofoed)