Blockhedegaard3518
Adult-onset bestrophinopathy can be mistaken as CSCR. Multimodal imaging findings, examination of potentially affected family members, electrophysiology, and genetic testing facilitate the correct diagnosis.
Adult-onset bestrophinopathy can be mistaken as CSCR. Multimodal imaging findings, examination of potentially affected family members, electrophysiology, and genetic testing facilitate the correct diagnosis.Escherichia coli strains are responsible for a majority of human extra-intestinal infections, resulting in huge direct medical and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic E. coli is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we showed that these specific OMVs inhibit the macroautophagic/autophagic flux by impairing the autophagosome-lysosome fusion, thus preventing the formation of acidic autolysosomes and autophagosome clearance. Furthermore, HlyF-associated OMVs were more prone to activate the non-canonical inflammasome pathway. Because autophagy and inflammation are crucial in the host's response to infection especially during sepsis, our findings revealed an unsuspected role of OMVs in the crosstalk between bacteria and their host, highlighting the fact that these extracellular vesicles have exacerbated pathogenic properties.Abbreviations AIEC adherent-invasive E. coliBDI bright detail intensityBMDM bone marrow-derived macrophagesCASP caspaseE. coli Escherichia coliEHEC enterohemorrhagic E. coliExPEC extra-intestinal pathogenic E. coliGSDMD gasdermin DGFP green fluorescent proteinHBSS Hanks' balanced salt solutionHlyF hemolysin FIL1B/IL-1B interleukin 1 betaISX ImageStreamX systemLPS lipopolysaccharideMut mutatedOMV outer membrane vesicleRFP red fluorescent proteinTEM transmission electron microscopyWT wild-type.A variety of disturbances such as starvation, organelle damage, heat stress, hypoxia and pathogen infection can influence the autophagic process. However, how the macroautophagy/autophagy machinery is regulated intrinsically by structural damage of the cell remains largely unknown. In this work, we utilized the C. elegans epidermis as the model to address this question. Our results showed that structural damage by mechanical wounding exerted proximal inhibitory effect and distant promotional effect on autophagy within the same epidermal cell. By disrupting individual mechanical supporting structures, we found that only damage of the basal extracellular matrix or the underlying muscle cells activated a distinct autophagic response in the epidermis. On the contrary, structural disruption of the epidermal cells at the apical side inhibited autophagy activation caused by different stress factors. Mechanistic studies showed that the basal promotional effect of structural damage on epidermal autophagy was mediated LC3, GABARAP and GATE-16 family 1; MTOR mechanistic target of rapamycin; MTORC1 MTOR complex 1; MUP-4 MUscle Positioning 4; NLP-29 Neuropeptide-Like Protein 29; PAT Paralyzed Arrest at Two-fold; PIX-1 PIX (PAK (p21-activated kinase) Interacting eXchange factor) homolog 1; RFP red fluorescent protein; RNAi RNA interference; SQST-1 SeQueSTosome related 1; UNC UNCoordinated; UV ultraviolet; VAB-10 variable ABnormal morphology 10; WT wild type.Macroautophagy/autophagy is a conserved cellular mechanism to degrade unneeded cytoplasmic proteins and organelles to recycle their components, and it is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Whereas autophagy is essential for early development of embryos, no information exists regarding its functions during the transition from naive-to-primed pluripotency. Here, by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we find that dynamic changes in ATG7-dependent autophagy are critical for the naive-to-primed transition, and are also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that NANOG acts as a barrier to prevent pluripotency transition, and autophagy-dependent NANOG degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy receptor protein SQSTM1/p62 translocated into the nucleus during the pluripotency transition period and is preferentially associated with K63 ubiquitinated NANOG for selective protein degradation. selleck kinase inhibitor In vivo, loss of autophagy by ATG7 depletion disrupts peri-implantation development and causes increased chromatin association of NANOG, which affects neuronal differentiation by competitively binding to OTX2-specific neuroectodermal development-associated regions. Taken together, our findings reveal that autophagy-dependent degradation of NANOG plays a critical role in regulating exit from the naive state and marks distinct cell fate allocation during lineage specification.Abbreviations 3-MA 3-methyladenine; EpiLC epiblast-like cell; ESC embryonic stem cell; PGC primordial germ cell.We examined the apoptotic response of two glioblastoma cells, p53 wild type U87 and p53 mutated T98G, to doxorubicin, bortezomib, and vorinostat, which respectively target DNA, 26S proteasome and histone deacetylase, to clarify p53's function in apoptosis. We demonstrated that doxorubicin induced apoptosis in U87 cells but not in T98G cells. The level of p53 was definitively correlated to the extent of DNA damage and apoptosis initiation. Dominant-negative p53 reduced p21 expression, but did not affect doxorubicin-induced apoptosis, so the transcriptional activity of p53 seemed not to participate in doxorubicin-induced apoptosis. However, p53 concentrated into the nucleus during heavy apoptosis. Bortezomib could induce apoptosis in U87 with high sensitivity and T98G cells with low sensitivity. In contrast, vorinostat promoted apoptosis in both U87 and T98G cells and reduced the basal level of p53 in U87 cells, indicating that p53 played no role in the vorinostat-induced apoptosis. To clearly define the role of p53 in bortezomib- and doxorubicin-induced apoptosis, we combined doxorubicin with bortezomib to treat U87 cells to assess this combination's effect on apoptosis and p53 status. Interestingly, the combination of doxorubicin with bortezomib engendered compound stress, resulting in a synergistic outcome for apoptosis in U87 cells. However, the amounts of p53 in the total count and in the nucleus were much lower with the combination than with doxorubicin alone, suggesting that p53 played no role in either the compound stress, doxorubicin-only or bortezomib-induced apoptosis.Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian cancer cases and is the most common cause of gynecological cancer death. Understanding the molecular mechanisms of EOC will help develop better diagnostics and more effective treatments. This study aimed to investigate whether long non-coding RNA ADAMTS9-AS1 (ADAMTS9-AS1) could regulate solute carrier family 7 member 11 (SLC7A11) expression and inhibit ferroptosis by sponging micoRNA-587 in EOC progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting results showed that ADAMTS9-AS1 expression was elevated in EOC cells; microRNA-587 expression was up-regulated and SLC7A11 expression was down-regulated after knocking down ADAMTS9-AS1 by transfection with siRNAs; however, microRNA-587 inhibitor reversed SLC7A11 expression in ADAMTS9-AS1 knocking down cells. Ferroptosis related marker detection and cell function assay confirmed that knocking down ADAMTS9-AS1 inhibited EOC cells proliferation and migration by promoting ferroptosis. Overexpression of micoRNA-587 also promoted ferroptosis while inhibited cells proliferation and migration in EOC cells. Additionally, micoRNA-587 inhibitor reversed the effect of ADAMTS9-AS1 silence on the ferroptosis and cell function. Moreover, dual-luciferase reporter gene assay and RNA immunoprecipitation assay confirmed that miR-587 was as a sponge for ADAMTS9-AS1 and SLC7A11. In conclusion, our study found that ADAMTS9-AS1 attenuated ferroptosis by targeting miR-587/SLC7A11 axis in EOC. Our study provides a new therapeutic target for EOC.Cervical squamous cell carcinoma (CESC) is one of the most common cancers in women. Recent studies have proved that circular RNAs (circRNAs) could regulate the progress of CESC, but the mechanism is still indistinct. In this work, we explored the roles of circ_0072008 in CESC. The expression levels of circ_0072008, microRNA-1305 (miR-1305) and mRNA of HELLS (helicase, lymphoid specific) were detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) in CESC tissues. Meanwhile, the level of HELLS was quantified by western blot analysis. Besides, the cell functions were examined by colony formation assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, wound healing assay, flow cytometry assay and western blot. Furthermore, the interaction between miR-1305 and circ_0072008 or HELLS was detected by dual-luciferase reporter assay. The function of circ_0072008 in CESC has also been further verified in vivo by xenograft model experiments. The levels of circ_0072008 and HELLS were upregulated, and the miR-1305 level was decreased in CESC tissues in contrast to that in normal tissues. For functional analysis, silencing circ_0072008 inhibited cell proliferation and cell migration, whereas enhanced cell apoptosis in CESC cells. In mechanism, circ_0072008 acted as a miR-1305 sponge to regulate the level of HELLS. Moreover, miR-1305 was confirmed to repress the progression of CESC cells by suppressing HELLS. Meanwhile, knockdown of circ_0072008 inhibited CESC cells growth in vivo. In conclusion, circ_0072008 facilitated CESC cell proliferation, migration, and invasion through increasing HELLS expression by regulating miR-1305, which also offered an underlying targeted therapy for CESC treatment.