Bertramrobbins3792
Renal cell carcinoma (RCC) represents around 3% of all cancers, within which clear cell RCC (ccRCC) are the most common type (70-75%). The RCC disease regularly progresses asymptomatically and upon presentation is recurrently metastatic, therefore, an early method of detection is necessary. The identification of one or more specific biomarkers measurable in biofluids (i.e., urine) by combined approaches could surely be appropriate for this kind of cancer, especially due to easy obtainability by noninvasive method. OLR1 is a metabolic gene that encodes for the Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), implicated in inflammation, atherosclerosis, ROS, and metabolic disorder-associated carcinogenesis. Specifically, LOX-1 is clearly involved in tumor insurgence and progression of different human cancers. This work reports for the first time the presence of LOX-1 protein in ccRCC urine and its peculiar distribution in tumoral tissues. The urine samples headspace has also been analyzed for the presence of the volatile compounds (VOCs) by SPME-GC/MS and gas sensor array. In particular, it was found by GC/MS analysis that 2-Cyclohexen-1-one,3-methyl-6-(1-methylethyl)- correlates with LOX-1 concentration in urine. The combined approach of VOCs analysis and protein quantification could lead to promising results in terms of diagnostic and prognostic potential for ccRCC tumors.Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.Premalignant oral lesions (PPOLs) which bypass senescence (IPPOL) have a much greater probability of progressing to malignancy, but pre-cancerous fields also contain mortal PPOL keratinocytes (MPPOL) that possess tumour-promoting properties. To identify metabolites that could potentially separate IPPOL, MPPOL and normal oral keratinocytes non-invasively in vivo, we conducted an unbiased screen of their conditioned medium. MPPOL keratinocytes showed elevated levels of branch-chain amino acid, lipid, prostaglandin, and glutathione metabolites, some of which could potentially be converted into volatile compounds by oral bacteria and detected in breath analysis. Extracellular metabolites were generally depleted in IPPOL, and only six were elevated, but some metabolites distinguishing IPPOL from MPPOL have been associated with progression to oral squamous cell carcinoma (OSCC) in vivo. One of the metabolites elevated in IPPOL relative to the other groups, citrate, was confirmed by targeted metabolomics and, interestingly, has been implicated in cancer growth and metastasis. Although our investigation is preliminary, some of the metabolites described here are detectable in the saliva of oral cancer patients, albeit at a more advanced stage, and could eventually help detect oral cancer development earlier.We investigated the role of PI3Kγ in oral carcinogenesis by using a murine model of oral squamous carcinoma generated by exposure to 4-nitroquinoline 1-oxide (4NQO) and the continuous human cancer cell line HSC-2 and Cal-27. PI3Kγ knockout (not expressing PI3Kγ), PI3Kγ kinase-dead (carrying a mutation in the PI3Kγ gene causing loss of kinase activity) and wild-type (WT) C57Bl/6 mice were administered 4NQO via drinking water to induce oral carcinomas. At sacrifice, lesions were histologically examined and stained for prognostic tumoral markers (EGFR, Neu, cKit, Ki67) and inflammatory infiltrate (CD3, CD4, CD8, CD19 and CD68). Prevalence and incidence of preneoplastic and exophytic lesions were significantly and similarly delayed in both transgenic mice versus the control. The expression of prognostic markers, as well as CD19+ and CD68+ cells, was higher in WT, while T lymphocytes were more abundant in tongues isolated from transgenic mice. HSC-2 and Cal-27 cells were cultured in the presence of the specific PI3Kγ-inhibitor (IPI-549) which significantly impaired cell vitality in a dose-dependent manner, as shown by the MTT test. Here, we highlighted two different mechanisms, namely the modulation of the tumor-infiltrating cells and the direct inhibition of cancer-cell proliferation, which might impair oral cancerogenesis in the absence/inhibition of PI3Kγ.Lipocalin 2 (LCN2), a proinflammatory mediator, is involved in the pathogenesis of myeloproliferative neoplasms (MPN). Here, we investigated the molecular mechanisms of LCN2 overexpression in MPN. LCN2 mRNA expression was 20-fold upregulated in peripheral blood (PB) mononuclear cells of chronic myeloid leukemia (CML) and myelofibrosis (MF) patients vs. healthy controls. In addition, LCN2 serum levels were significantly increased in polycythemia vera (PV) and MF and positively correlated with JAK2V617F and mutated CALR allele burden and neutrophil counts. Mechanistically, we identified endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) as a main driver of LCN2 expression in BCR-ABL- and JAK2V617F-positive 32D cells. The UPR inducer thapsigargin increased LCN2 expression >100-fold, and this was not affected by kinase inhibition of BCR-ABL or JAK2V617F. Interestingly, inhibition of the UPR regulators inositol-requiring enzyme 1 (IRE1) and c-Jun N-terminal kinase (JNK) significantly reduced thapsigargin-induced LCN2 RNA and protein expression, and luciferase promoter assays identified nuclear factor kappa B (NF-κB) and CCAAT binding protein (C/EBP) as critical regulators of mLCN2 transcription. In conclusion, the IRE1-JNK-NF-κB-C/EBP axis is a major driver of LCN2 expression in MPN, and targeting UPR and LCN2 may represent a promising novel therapeutic approach in MPN.Prostate cancer is the second most common male malignancy, with a highly variable clinical presentation and outcome. Therefore, diagnosis, prognostication, and management remain a challenge, as available clinical, imaging, and pathological parameters provide limited risk assessment. Thus, many biomarkers are under study to fill this critical gap, some of them based on epigenetic aberrations that might be detected in liquid biopsies. Herein, we provide a critical review of published data on the usefulness of DNA methylation and circulating tumor cells in diagnosis and treatment decisions in cases of prostate cancer, underlining key aspects and discussing the importance of these advances to the improvement of the management of prostate cancer patients. Using minimally invasive blood tests, the detection of highly specific biomarkers might be crucial for making therapeutic decisions, determining response to specific treatments, and allowing early diagnosis.Predicting patient responses to anticancer drugs is a major challenge both at the drug development stage and during cancer treatment. Tumor explant culture platforms (TECPs) preserve the native tissue architecture and are well-suited for drug response assays. However, tissue longevity in these models is relatively low. Several methodologies have been developed to address this issue, although no study has compared their efficacy in a controlled fashion. We investigated the effect of two variables in TECPs, specifically, the tissue size and culture vessel on tissue survival using micro-dissected tumor tissue (MDT) and tissue slices which were cultured in microfluidic chips and plastic well plates. Tumor models were produced from ovarian and prostate cancer cell line xenografts and were matched in terms of the specimen, total volume of tissue, and respective volume of medium in each culture system. We examined morphology, viability, and hypoxia in the various tumor models. Our observations suggest that the viability and proliferative capacity of MDTs were not affected during the time course of the experiments. In contrast, tissue slices had reduced proliferation and showed increased cell death and hypoxia under both culture conditions. Tissue slices cultured in microfluidic devices had a lower degree of hypoxia compared to those in 96-well plates. Globally, our results show that tissue slices have lower survival rates compared to MDTs due to inherent diffusion limitations, and that microfluidic devices may decrease hypoxia in tumor models.It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects of nutrients at molecular level and contribute to the search for anti-cancer treatments. buy TR-107 These efforts are expanding the precious source of information necessary for the selection of natural compounds useful for the design of novel drugs or functional foods. Here we present a computational study to select new candidate compounds that could play a role in cancer prevention and care. Starting from a dataset of genes that are co-expressed in programmed cell death experiments, we investigated on nutrigenomics treatments inducing apoptosis, and searched for compounds that determine the same expression pattern. Subsequently, we selected cancer types where the genes showed an opposite expression pattern and we confirmed that the apoptotic/nutrigenomics expression trend had a significant positive survival in cancer-affected patients. Furthermore, we considered the functional interactors of the genes as defined by public protein-protein interaction data, and inferred on their involvement in cancers and/or in programmed cell death. We identified 7 genes and, from available nutrigenomics experiments, 6 compounds effective on their expression. These 6 compounds were exploited to identify, by ligand-based virtual screening, additional molecules with similar structure. We checked for ADME criteria and selected 23 natural compounds representing suitable candidates for further testing their efficacy in apoptosis induction. Due to their presence in natural resources, novel drugs and/or the design of functional foods are conceivable from the presented results.Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation.