Bakli9829
The p53 protein and its post-translational modifications are distinctly expressed in various normal cell types and malignant cells and are usually detected by immunohistochemistry and flow cytometry in contemporary diagnostics. Here, we describe an approach for simultaneous multiparameter detection of p53, its post-translational modifications and p53 pathway-related signaling proteins in single cells using mass cytometry.
We conjugated p53-specific antibodies to metal tags for detection by mass cytometry, allowing the detection of proteins and their post-translational modifications in single cells. We provide an overview of the antibody validation process using relevant biological controls, including cell lines treated in vitro with a stimulus (irradiation) known to induce changes in the expression level of p53. Finally, we present the potential of the method through investigation of primary samples from leukemia patients with distinct
mutational status.
The p53 protein can be detected in cell lines and in primary samples by mass cytometry. By combining antibodies for p53-related signaling proteins with a surface marker panel, we show that mass cytometry can be used to decipher the single cell p53 signaling pathway in heterogeneous patient samples.
Single cell profiling by mass cytometry allows the investigation of the p53 functionality through examination of relevant downstream signaling proteins in normal and malignant cells. Our work illustrates a novel approach for single cell profiling of p53.
Single cell profiling by mass cytometry allows the investigation of the p53 functionality through examination of relevant downstream signaling proteins in normal and malignant cells. Our work illustrates a novel approach for single cell profiling of p53.Analyses of natural variation and the use of mutagenesis and molecular-biological approaches have revealed 50 symbiotic regulatory genes in pea (Pisum sativum L.). Studies of genomic synteny using model legumes, such as Medicago truncatula Gaertn. and Lotus japonicus (Regel) K. Larsen, have identified the sequences of 15 symbiotic regulatory genes in pea. These genes encode receptor kinases, an ion channel, a calcium/calmodulin-dependent protein kinase, transcription factors, a metal transporter, and an enzyme. This review summarizes and describes mutant alleles, their phenotypic manifestations, and the functions of all identified symbiotic regulatory genes in pea. Some examples of gene interactions are also given. In the review, all mutant alleles in genes with identified sequences are designated and still-unidentified symbiotic regulatory genes of great interest are considered. The identification of these genes will help elucidate additional components involved in infection thread growth, nodule primordium development, bacteroid differentiation and maintenance, and the autoregulation of nodulation. The significance of symbiotic mutants of pea as extremely fruitful genetic models for studying nodule development and for comparative cell biology studies of legume nodules is clearly demonstrated. Finally, it is noted that many more sequences of symbiotic regulatory genes remain to be identified. Transcriptomics approaches and genome-wide sequencing could help address this challenge.The increasing annual emissions of iron ore tailings have proved a great threat to the natural environment, and the shortage of natural river sand, as well as the pursuit of sustainable development materials, provides motivation to reuse iron ore tailings as a fine aggregate in concrete. Due to the significantly different properties of iron tailings sand compared with natural river sand-such as the higher density, higher content of limestone particles smaller than 75 μm and its rough and angular shape-concretes prepared with iron tailings sand show remarkably higher shrinkage. This study presents the shrinkage characterization and shrinkage-reducing efficiency of three different methods on iron tailings, sand concrete and river sand concrete. The internal humidity was also monitored to reveal the shrinkage-reducing mechanism. The obtained results indicated that the autogenous and total shrinkage of iron tailings sand concrete were 9.8% and 13.3% higher than the river sand concrete at the age of 90 d, respectively. The shrinkage reducing agent (SRA) was the most effective shrinkage reducing method for river sand concrete, while for iron tailings sand concrete, super absorbent polymer (SAP) and controlled permeable formwork liner (CPFL) it worked best on autogenous shrinkage and drying shrinkage, respectively. Furthermore, the shrinkage mitigation strategies worked earlier for the drying shrinkage behavior of iron tailings sand concrete, while no such condition could be found for autogenous shrinkage.Preparation for outbreaks of emerging infectious diseases is often predicated on beliefs that we will be able to understand the epidemiological nature of an outbreak early into its inception. However, since many rare emerging diseases exhibit different epidemiological behaviors from outbreak to outbreak, early and accurate estimation of the epidemiological situation may not be straightforward in all cases. N6022 cell line Previous studies have proposed considering the role of active asymptomatic infections co-emerging and co-circulating as part of the process of emergence of a novel pathogen. Thus far, consideration of the role of asymptomatic infections in emerging disease dynamics have usually avoided considering some important sets of influences. In this paper, we present and analyze a mathematical model to explore the hypothetical scenario that some (re)emerging diseases may actually be able to maintain stable, endemic circulation successfully in an entirely asymptomatic state. We argue that an understanding of this potential mechanism for diversity in observed epidemiological dynamics may be of considerable importance in understanding and preparing for outbreaks of novel and/or emerging diseases.Global warming is negatively impacting on crop yield and Earth's climate changes can bring possible negative effects on the growth and reproductive success of crops [...].