Ayersgrant9145

Z Iurium Wiki

The great potential of Extrusion Additive Manufacturing (EAM) for structural prototyping in the automotive industry is severely limited by the directional bias in the build direction. The layerwise fabrication leads to reduced mechanical properties at the layer-to-layer interface compared to the bulk of the strand. Especially for the often-used semi-crystalline thermoplastics, the mechanical properties strongly depend on the processing parameters, even more so if short fibers are used as fillers. Therefore, ideal processing windows in which the mechanical strength and modulus in the z-direction reach their maximum can be identified for these parameters, resulting in a reduced directional bias. The influence of the EAM processing parameters on mechanical strength has already been investigated, correlating strength with thermal conditions during printing. CRT-0105446 research buy However, these considerations did not distinguish between the thermal effect on the polymer properties, the formation of voids and pores at the layer interface, and the resulting fiber orientation for different strand proportions. Therefore, in this study, the effect of different processing temperatures and layer heights on the pore size and distribution, as well as the fiber orientation in the different regions of the mesostructure was investigated using X-ray Computed Tomography (XCT).This study suggested the design of type-variable electronic paper with multiple bottom electrode structures and experimentally investigated the process mechanism of the electrophoretic particle loading method (EPLM) as an electronic ink injection method. The type-variable electronic paper was achieved by constructing the multi-electrode structure that had a structure of four electrodes that can independently apply voltage to one cell. By injecting electronic ink that mixes two types of particles with opposite charges into an electrically neutral color (blue) fluid, we realized electronic paper with a single color, and we then measured the optical characteristics of the panel. We used the EPLM to prevent charged particles that have lost their charge from being injected into the e-paper by using an electric field. In order to confirm the color expression and transmittance control effect using the multi-electrode structure, we conducted reflectance measurement and transmittance measurement experiments. Our experiments confirmed that the expression of more than five colors was possible and that the transmittance was controllable to a minimum of 13.50% and a maximum of 71.18%. This study provides an attractive method to create e-paper as a new form outside the framework of existing e-paper technology.A tailings dam failure can lead to disastrous impacts on people's livelihood and the surrounding ecological environment. Due to interactions among water, tailings and ground, the mechanism of a tailings flow is more complicated than that of a flood flow. In this paper, the tailings flow is regarded as a homogeneous and incompressible non-Newtonian fluid. Its rheological properties were studied through rheological tests conforming to the Bingham model. The rheological parameters were further used in a Computational Fluid Dynamics (CFD) simulation over complex terrain to explore the tailings flow characteristics. The method was validated with experimental results of a non-Newtonian dam-break flow from literature. The flow characteristics, including flow velocity, runout distance, inundation area and depth, were analyzed in the case of the Dagangding tailings dam. The results showed that the downstream railway and village would not be affected in a conservative scenario. Finally, the effects of two measures for preventing tailings flow hazards were discussed. Setting the check dam and planting grasses and trees can effectively mitigate the damage of tailings flow.With the rapid development of modern industries, the surface quality and performance of metals need to be improved. Composite electrodeposition (co-deposition) has evolved as an important technique for improving the surface performance of metal materials. Herein, a new type of graphene oxide (GO)-reinforced nickel-boron (Ni-B) composite coating was successfully prepared on a 7075 aluminum (Al) alloy by co-deposition. Characterization revealed a significant improvement in the mechanical and anti-corrosion properties of the composite with the incorporation of GOs. The composite showed a rougher, compact, cauliflower-like morphology with finer grains, a higher hardness (1532 HV), a lower rate of wear (5.20 × 10-5 mm3∙N-1∙m-1), and a lower corrosion rate (33.66 × 10-3 mm∙y-1) compared with the Ni-B alloy deposit (878 HV, 9.64 × 10-5 mm3∙N-1∙m-1, and 116.64 × 10-3 mm∙y-1, respectively). The mechanism by which GOs strengthen the Ni-B matrix is discussed.Despite being the lightest element in the periodic table, hydrogen poses many risks regarding its production, storage, and transport, but it is also the one element promising pollution-free energy for the planet, energy reliability, and sustainability. Development of such novel materials conveying a hydrogen source face stringent scrutiny from both a scientific and a safety point of view they are required to have a high hydrogen wt.% storage capacity, must store hydrogen in a safe manner (i.e., by chemically binding it), and should exhibit controlled, and preferably rapid, absorption-desorption kinetics. Even the most advanced composites today face the difficult task of overcoming the harsh re-hydrogenation conditions (elevated temperature, high hydrogen pressure). Traditionally, the most utilized materials have been RMH (reactive metal hydrides) and complex metal borohydrides M(BH4)x (M main group or transition metal; x valence of M), often along with metal amides or various additives serving as catalysts (Pd2+, Ti4+ etc.). Through destabilization (kinetic or thermodynamic), M(BH4)x can effectively lower their dehydrogenation enthalpy, providing for a faster reaction occurring at a lower temperature onset. The present review summarizes the recent scientific results on various metal borohydrides, aiming to present the current state-of-the-art on such hydrogen storage materials, while trying to analyze the pros and cons of each material regarding its thermodynamic and kinetic behavior in hydrogenation studies.The radiation shielding features of the ternary oxyfluoride tellurite glasses were studied by calculating different shielding factors. The effect of the TeO2, WO3, and ZnF2 on the tested glass system's attenuating performance was predicted from the examination. The mass attenuation coefficient (µ/ρ) values for the oxyfluoride tellurite glasses depend highly on the concentration of WO3, as well as ZnF2. All the present ZnFWTe1-ZnFWTe5 samples have higher µ/ρ values than that of the pure TeO2 glass at all energies. For the samples with a fixed content of WO3, the replacement of TeO2 by ZnF2 increases the µ/ρ, while for the glasses with a fixed content of TeO2, the replacement of WO3 by ZnF2 results in a decline in the µ/ρ values. The results revealed that ZnFWTe4 has the lowest linear attenuation coefficient (µ) among the oxyfluoride tellurite glasses, whereby it has a slightly higher value than pure TeO2 glass. The maximum effective atomic number (Zeff) is found at 0.284 MeV and varied between 31.75 and 34.30 for the tested glasses; it equaled to 30.29 for the pure TeO2 glass. The half-value layer (HVL) of the glasses showed a gradual decline with increasing density. The pure TeO2 was revealed to have thicker HVL than the selected oxyfluoride tellurite glasses. A 1.901-cm thickness of the sample, ZnFWTe1, is required to decrease the intensity of a photon with an energy of 0.284 MeV to one-tenth of its original, whereas 1.936, 1.956, 2.212, and 2.079 cm are required for glasses ZnFWTe2, ZnFWTe3, ZnFWTe4, and ZnFWTe5, respectively.The effect of a boronizing and siliciding process on CoCrFeNiHf0.1-0.42 high entropy alloys was examined in this study. When increasing the amount of added Hf in CoCrFeNiHfx, the structure of the alloys gradually transformed from single-phase FCC to firstly Ni7Hf2 + FCC, and finally to C15 Laves and FCC phases. The boronizing/siliciding process resulted in the formation of a silicon-rich layer and a boride layer (BL). Increasing the amount of Hf in the alloys resulted in a decrease in the combined layer thickness, which was measured for CoCrFeNi, CoCrFeNiHf0.1, CoCrFeNiHf0.2, and CoCrFeNiHf0.42 to be 70 µm, 63 µm, 20 µm, and 15 µm, respectively. In contrast, the thickness of the transition zone/diffusion zone increased with more Hf in the alloys. While silicon atoms were gathered close to the BL, they were not transferred into the CoCrFeNi substrate. In contrast to the observation for CoCrFeNi, Si atoms penetrated through the Ni-rich phase (Ni7Hf2) in the CoCrFeNiHfx alloys. Furthermore, the Cr-B rich area (Cr5B3) in the coating limited the transport of Si into the CoCrFeNiHfx substrates. XRD analysis showed that the BL contained Ni2Si, FeB, Fe2B, Co2B, and Cr5B3 phases.To develop highly efficient thermoelectric materials, the generation of homogeneous heterostructures in a matrix is considered to mitigate the interdependency of the thermoelectric compartments. In this study, Cu2Te nanoparticles were introduced onto Bi2Te2.7Se0.3 n-type materials and their thermoelectric properties were investigated in terms of the amount of Cu2Te nanoparticles. A homogeneous dispersion of Cu2Te nanoparticles was obtained up to 0.4 wt.% Cu2Te, whereas the Cu2Te nanoparticles tended to agglomerate with each other at greater than 0.6 wt.% Cu2Te. The highest power factor was obtained under the optimal dispersion conditions (0.4 wt.% Cu2Te incorporation), which was considered to originate from the potential barrier on the interface between Cu2Te and Bi2Te2.7Se0.3. The Cu2Te incorporation also reduced the lattice thermal conductivity, and the dimensionless figure of merit ZT was increased to 0.75 at 374 K for 0.4 wt.% Cu2Te incorporation compared with that of 0.65 at 425 K for pristine Bi2Te2.7Se0.3. This approach could also be an effective means of controlling the temperature dependence of ZT, which could be modulated against target applications.Rollpave pavement, as a rollable prefabricated asphalt pavement technology, can effectively reduce the overall road closure time required for pavement construction and maintenance. Sensors can be integrated into Rollpave pavement, thereby avoiding sensor damage that may otherwise result from high temperatures and compactive forces during the rolling process, as well as pavement structural damage resulting from cutting and drilling. However, the embedment of sensors into Rollpave pavement still presents certain challenges, namely poor interfacial synergy between the embedded sensor and the asphalt mixture. To solve this problem, three-point bending tests and dynamic response FEM simulations were used to optimize the embedded sensor's packaging. The influence of sensor embedment on Rollpave pavement under different working conditions was analyzed. Results of these analyses show that low temperature and the epoxy resin negatively affect the bending performance of specimens, and that packaging with cylindrical shape, flat design, and consisting of a material with modulus similar to that of the asphalt mixture should be preferred.

Autoři článku: Ayersgrant9145 (Stallings Macdonald)