Astrupalstrup4348

Z Iurium Wiki

Diapause is one of the survival strategies of insects for confronting adverse environmental conditions. Bombyx mori displays typical embryonic diapause, and offspring diapause depends on the incubation environment of the maternal embryo in the bivoltine strains of the silkworm. However, the molecular mechanisms of the diapause induction process are still poorly understood. In this study, we compared the differentially expressed miRNAs (DEmiRs) in bivoltine silkworm embryos incubated at diapause- (25 °C) and non-diapause (15 °C)-inducing temperatures during the blastokinesis (BK) and head pigmentation (HP) phases using transcriptome sequencing. There were 411 known miRNAs and 71 novel miRNAs identified during the two phases. Among those miRNAs, there were 108 and 74 DEmiRs in the BK and HP groups, respectively. By the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the predicted target genes of the DEmiRs, we found that aside from metabolism, the targets were also enriched in phototransduction-fly and insect hormone biosynthesis in the BK group and the HP group, respectively. Dual luciferase reporter assay illustrated that bmo-miR-6497-3p directly regulated Bmcycle and subsequently regulated the expression of circadian genes. These results imply that microRNAs, as vitally important regulators, respond to different temperatures and participate in the diapause induction process across species.Innate immune responses are essential to maintaining insect and tick health and are the primary defense against pathogenic viruses, bacteria, and fungi. Cell line research is a powerful method for understanding how invertebrates mount defenses against pathogenic organisms and testing hypotheses on how these responses occur. In particular, immortal arthropod cell lines are valuable tools, providing a tractable, high-throughput, cost-effective, and consistent platform to investigate the mechanisms underpinning insect and tick immune responses. The research results inform the controls of medically and agriculturally important insects and ticks. This review presents several examples of how cell lines have facilitated research into multiple aspects of the invertebrate immune response to pathogens and other foreign agents, as well as comments on possible future research directions in these robust systems.

The destructive insect pest

(Hufnagel) (Lepidoptera Noctuidae) is a polyphagous species targeting many economically important plants. The extensive and arbitrary use of insecticides has resulted in the build-up of insecticide resistance and pesticide residues accumulating in food. Therefore, it is becoming evident that alternative pest management tools are needed to reduce risks to humans, the environment, and non-target organisms, and at the same time, they should be used in field application at the lowest cost.

In view of this objective, the present study demonstrates the toxicity of lemongrass (

(DC.) Stapf) essential oil (EO), against the black cutworm

under controlled laboratory conditions in terms of measuring the activity of peroxidase and detoxification enzymes. The chemical components of the EO were analyzed using GC-MS.

The results show that after 96 h post treatment, the LC

and LC

values were 427.67 and 2623.06 mg/L, respectively, of

EO on second-instar larvae of

. A slight significance in elongation of the larval duration with LC

and LC

value was found with control. By GC-MS analysis, the main compounds identified in the EO were

-citral and

-citral with percentages of 35.91%, and 35%, respectively. The oxidative stress indicates a significant increase in CAT and lipid peroxidase enzyme activity after 96 h post treatment at the LC

and LC

. Conversely, the detoxification enzyme activity shows an inhibition of CarE and GST enzymes of larvae exposed to LC

and LC

values in response to

EO.

The present data show that lemongrass EO has insecticidal activity against the black cutworm,

.

The present data show that lemongrass EO has insecticidal activity against the black cutworm, A. ipsilon.Tetranychus urticae is an important agricultural pest that feeds on more than 1100 plant species. To investigate gene expression network in development process of deutonymph, a comprehensive transcriptome analysis of different developmental time points of deutonymph in T. urticae was performed. Comparing with expression profile of 7 h, 309, 876, 2736, and 3432 differential expression genes were detected at time points 14 h, 21 h, 28 h, and 35 h, respectively. The expression dynamic analysis indicated that genes in hormone- (ecdysteroid and juvenile hormone) and cuticle- (chitin and cuticle proteins) related pathways were indispensable for development process in deutonymph. Among hormone related pathway genes, the ecdysteroid biosynthesis pathway genes were highly expressed at the growth period of development process, which is opposite to the expression patterns of juvenile hormone biosynthesis pathway genes. For cuticle related pathway genes, 13 chitinase genes were identified in the genome of T. urticae, and 8 chitinase genes were highly expressed in different time points of developmental process in the deutonymph of T. urticae. Additionally, 59 cuticle protein genes were identified from genome, and most of the cuticle protein genes were expressed in the molting period of developmental process in deutonymph. This study reveals critical genes involved in the development process of deutonymph and also provides comprehensive development transcriptome information for finding more molecular targets to control this pest.Citrus tristeza virus (CTV) is one of the most important citrus tree viruses a graft-transmissible virus that can be vectored by several aphid species. Diaphorina citri is the insect vector of "Candidatus Liberibacter spp.", a bacterium associated with citrus Huanglongbing (HLB). However, no detailed description of the relationship between CTV and D. citri has been reported. In this study, D. citri adults collected from CTV-infected "Shatangju" mandarin, "Newhall" sweet orange, and "fingered citron" trees in different orchards yielded CTV-positive rates of 40%, 65%, and 95%, respectively, upon detection by conventional PCR. Illumina HiSeq sequencing followed by de novo assembly recovered the primary full CTV genome from the RNA of 30 D. citri adults sampled from CTV-positive citrus plants. Molting and adult emergence did not affect the presence or titers of CTV within the D. citri; however, the persistence of CTV in psyllids varied among different host plant species. Groups of 10 D. citri (from a population 85% CTV-positive) were shown to potentially transmit CTV to two citrus species, "Shatangju" mandarin and "Eureka" lemon, yielding 58.33% and 83.33% CTV-positive plants, respectively. buy H2DCFDA No transmission of CTV to orange jasmine plants occurred. Thus, this study reports on the ability of D. citri to acquire and transmit CTV, making D. citri as a vector of two important citrus pathogens, warranting further attention and investigation.Nocturnal light pollution from anthropogenic origin is increasing worldwide and is recognised as a major threat for nocturnal biodiversity. We studied the impact of artificial light on the mate attraction success of female common glow-worms (Lampyris noctiluca L.) by daily monitoring their glowing status in the field, acting as a proxy for mating status throughout the mating season. We found that females in dark surroundings typically stopped glowing after one night, indicating that they had mated, while females in illuminated areas glowed for significantly more nights, in some cases up to 15 nights. Our study confirms previous findings and hypotheses that females exposed to artificial light suffer from a reduced mate attraction success with a negative impact on populations.The attraction range of YATLORf pheromone traps to adults of four species of Agriotes (A. brevis, A. sordidus, A. litigiosus, and A. ustulatus) was studied to provide additional information about the most harmful Agriotes species in Europe. Male click beetles were marked and released at different distances from a pheromone trap. The recapture rate was calculated and analyzed using analysis of variance. The recapture rate was significantly affected by distance, species, and wind direction. The recapture rate decreased as distance increased. The majority of beetles were caught from short distances (up to 10 m) within the first five days. A. brevis, a mainly crawling species, showed the lowest recapture rate. The wind direction affected the recovery rate, with a significantly lower number of beetles moving downwind from the release points. Maximum sampling ranges and effective sampling areas were calculated. The obtained estimations were low (53 to 86 m and 509 to 2602 m2, respectively) for all the considered Agriotes species, suggesting that they were unsuitable for use as mass trapping instruments to disrupt mating. However, it seems possible to use the traps not only as monitoring tools, but also as attract-and-kill strategies for most beetle populations.Investigating the distributions of invasive species in marginal habitats can give clues to the factors constraining invasive spread. Vespula germanica is the most widely distributed of all the invasive Vespids, which in the Southern Hemisphere typically have large extensive invasive populations. In contrast, the invasion into South Africa has been slow and is still confined to a small geographic area. Here we analyse the distribution of all recent nest records in South Africa (n = 405). The distance to main rivers, mean annual rainfall, summer normalised difference moisture index (NDMI) values, and mean annual temperatures (average, minimum, maximum, and summer maximum temperature) was measured for every nest. We find that value ranges of these variables are different between the value ranges recorded for nests, the general distribution area of the wasp, and the area of absence. Optimised Hot Spot Analysis was used to quantify spatial structure in the measured climatic variables. Generally, factors related to moisture stress set the environmental limits of V. germanica's landscape distribution. Due to the strong preference of nesting sites close to river courses, for higher rainfall conditions, medium to medium-high NDMI values, and lower mean annual temperatures, it is unlikely that V. germanica will be able to spread uniformly where it is currently found in South Africa.Varroa destructor is considered one of the most devastating parasites of the honey bee, Apis mellifera, and a major problem for the beekeeping industry. Currently, the main method to control Varroa mites is the application of drugs that contain different acaricides as active ingredients. The pyrethroid tau-fluvalinate is one of the acaricides most widely used in beekeeping due to its efficacy and low toxicity to bees. However, the intensive and repetitive application of this compound produces a selective pressure that, when maintained over time, contributes to the emergence of resistant mites in the honey bee colonies, compromising the acaricidal treatments efficacy. Here we studied the presence of tau-fluvalinate residues in hives and the evolution of genetic resistance to this acaricide in Varroa mites from honey bee colonies that received no pyrethroid treatment in the previous four years. Our data revealed the widespread and persistent tau-fluvalinate contamination of beeswax and beebread in hives, an overall increase of the pyrethroid resistance allele frequency and a generalized excess of resistant mites relative to Hardy-Weinberg equilibrium expectations.

Autoři článku: Astrupalstrup4348 (Hemmingsen Corneliussen)