Ashleybutler4126

Z Iurium Wiki

Our results show that pupa adhesion can prevent the animal from being taken away by predators and is crucial for Drosophila fly survival.While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. find more Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.Covariation among traits shapes both phenotypic evolution and ecological interactions across space and time. However, rampant geographical variation in the strength and direction of such correlations can be particularly difficult to explain through generalized mechanisms. By integrating population genomics, surveys of natural history collections and spatially explicit analyses, we tested multiple drivers of trait correlations in a coral snake mimic that exhibits remarkable polymorphism in mimetic and non-mimetic colour traits. We found that although such traits co-occur extensively across space, correlations were best explained by a mixture of genetic architecture and correlational selection, rather than by any single mechanism. Our findings suggest that spatially complex trait distributions may be driven more by the simple interaction between multiple processes than by complex variation in one mechanism alone. These interactions are particularly important in mimicry systems, which frequently generate striking geographical variation and genetic correlations among colour pattern traits.In our everyday lives, we negotiate complex and unpredictable environments. Yet, much of our knowledge regarding locomotion has come from studies conducted under steady-state conditions. We have previously shown that humans rely on the ankle joint to absorb energy and recover from perturbations; however, the muscle-tendon unit (MTU) behaviour and motor control strategies that accompany these joint-level responses are not yet understood. In this study, we determined how neuromuscular control and plantar flexor MTU dynamics are modulated to maintain stability during unexpected vertical perturbations. Participants performed steady-state hopping and, at an unknown time, we elicited an unexpected perturbation via rapid removal of a platform. In addition to kinematics and kinetics, we measured gastrocnemius and soleus muscle activations using electromyography and in vivo fascicle dynamics using B-mode ultrasound. Here, we show that an unexpected drop in ground height introduces an automatic phase shift in the timing of plantar flexor muscle activity relative to MTU length changes. This altered timing initiates a cascade of responses including increased MTU and fascicle length changes and increased muscle forces which, when taken together, enables the plantar flexors to effectively dissipate energy. Our results also show another mechanism, whereby increased co-activation of the plantar- and dorsiflexors enables shortening of the plantar flexor fascicles prior to ground contact. This co-activation improves the capacity of the plantar flexors to rapidly absorb energy upon ground contact, and may also aid in the avoidance of potentially damaging muscle strains. Our study provides novel insight into how humans alter their neural control to modulate in vivo muscle-tendon interaction dynamics in response to unexpected perturbations. These data provide essential insight to help guide design of lower-limb assistive devices that can perform within varied and unpredictable environments.The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295-174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian-Triassic (P-Tr) and is flanked by two smaller crises, the Guadalupian-Lopingian (G-L) and Triassic-Jurassic (T-J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P-Tr mass extinction differed from the other two in two ways (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G-L and T-J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P-Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P-Tr extinction.

Autoři článku: Ashleybutler4126 (Kramer Russo)