Armstrongmolina2536

Z Iurium Wiki

It thus accounts for the higher Coulombic efficiency in the electrolyte with FEC. In situ EPR imaging also suggests that the Sand's capacity varies with the electrolytes. The forced growth of dendritic Li is carried out at a very large current density using a derivative operando EPR method to monitor the growth locus of the Li dendrites, indicating a tip-growing mechanism. This work can be instructive for those who are engaged in the study of electro-deposited lithium using in situ EPR imaging technology.A stochastic theory is developed to predict the spectral signature of proton-transfer processes and is applied to infrared spectra computed from ab initio molecular-dynamics simulations of a single H5O2 + cation. By constraining the oxygen atoms to a fixed distance, this system serves as a tunable model for general proton-transfer processes with variable barrier height. Three spectral contributions at distinct frequencies are identified and analytically predicted the quasi-harmonic motion around the most probable configuration, amenable to normal-mode analysis, the contribution due to transfer paths when the proton moves over the barrier, and a shoulder for low frequencies stemming from the stochastic transfer-waiting-time distribution; the latter two contributions are not captured by normal-mode analysis but exclusively reported on the proton-transfer kinetics. In accordance with reaction rate theory, the transfer-waiting-contribution frequency depends inversely exponentially on the barrier height, whereas the transfer-path-contribution frequency is rather insensitive to the barrier height.The curvature Qσ of spherically averaged exchange (X) holes ρX,σ(r, u) is one of the crucial variables for the construction of approximations to the exchange-correlation energy of Kohn-Sham theory, the most prominent example being the Becke-Roussel model [A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989)]. Here, we consider the next higher nonzero derivative of the spherically averaged X hole, the fourth-order term Tσ. This variable contains information about the nonlocality of the X hole and we employ it to approximate hybrid functionals, eliminating the sometimes demanding calculation of the exact X energy. The new functional is constructed using machine learning; having identified a physical correlation between Tσ and the nonlocality of the X hole, we employ a neural network to express this relation. While we only modify the X functional of the Perdew-Burke-Ernzerhof functional [Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)], a significant improvement over this method is achieved.In the theory of solidification, the kinetic coefficient multiplies the local supercooling to give the solid-liquid interface velocity. The same coefficient should drive interface migration at the coexistence temperature in proportion to a curvature force. This work computes the ice-water kinetic coefficient from molecular simulations starting from a sinusoidal ice-water interface at the coexistence temperature. We apply this method to the basal and prismatic ice planes and compare results to previous estimates from equilibrium correlation functions and simulations at controlled supercooling.Multiconfiguration perturbation theory (MCPT) is a general framework for correcting the reference function of arbitrary structures. The variants of MCPT introduced so far differ in the specification of their zero-order Hamiltonian, i.e., the partitioning. A common characteristic of MCPT variants is that no numerical procedure is invoked when handling the overlap of the reference function and determinants spanning the configuration space. This comes at the price of pinpointing a principal term in the determinant expansion of the reference, rendering the PT results dependent on this choice. It is here shown that the pivot dependence of MCPT can be eliminated by using an overcomplete set of projected determinants in the space orthogonal and complementary to the reference. The projected determinants form a so-called frame, a generalization of the notion of basis, allowing for redundancy of the set. The simple structure of the frame overlap matrix facilitates overlap treatment in closed form, a feature shared by previous MCPT variants. In particular, the Moore-Penrose inverse of singular matrices appearing in frame-based MCPT can be constructed without the need for any pivoting algorithm or numerical zero threshold. Pilot numerical studies are performed for the singlet-triplet gap of biradicaloid systems, relying on geminal-based, incomplete model space reference function. Comparison with previous MCPT variants as well as illustration of pivot invariance is provided.Noble-transition metal alloys offer emergent optical and electronic properties for near-infrared (NIR) optoelectronic devices. We investigate the optical and electronic properties of CuxPd1-x alloy thin films and their ultrafast electron dynamics under NIR excitation. Ultraviolet photoelectron spectroscopy measurements supported by density functional theory calculations show strong d-band hybridization between the Cu 3d and Pd 4d bands. These hybridization effects result in emergent optical properties, most apparent in the dilute Pd case. Time-resolved terahertz spectroscopy with NIR (e.g., 1550 nm) excitation displays composition-tunable electron dynamics. We posit that the negative peak in the normalized increment of transmissivity (ΔT/T) below 2 ps from dilute Pd alloys is due to non-thermalized hot-carrier generation. On the other hand, Pd-rich alloys exhibit an increase in ΔT/T due to thermalization effects upon ultrafast NIR photoexcitation. CuxPd1-x alloys in the dilute Pd regime may be a promising material for future ultrafast NIR optoelectronic devices.Conventional time-of-flight (TOF) measurements yield charge carrier mobilities in photovoltaic cells with time resolution limited by the RC time constant of the device, which is on the order of 0.1-1 µs for the systems targeted in the present work. We have recently developed an alternate TOF method, termed nonlinear photocurrent spectroscopy (NLPC), in which carrier drift velocities are determined with picosecond time resolution by applying a pair of laser pulses to a device with an experimentally controlled delay time. In this technique, carriers photoexcited by the first laser pulse are "probed" by way of recombination processes involving carriers associated with the second laser pulse. Here, we report NLPC measurements conducted with a simplified experimental apparatus in which synchronized 40 ps diode lasers enable delay times up to 100 µs at 5 kHz repetition rates. Carrier mobilities of ∼0.025 cm2/V/s are determined for MAPbI3 photovoltaic cells with active layer thicknesses of 240 and 460 nm using this instrument. Our experiments and model calculations suggest that the nonlinear response of the photocurrent weakens as the carrier densities photoexcited by the first laser pulse trap and broaden while traversing the active layer of a device. Based on this aspect of the signal generation mechanism, experiments conducted with co-propagating and counter-propagating laser beam geometries are leveraged to determine a 60 nm length scale of drift velocity dispersion in MAPbI3 films. Contributions from localized states induced by thermal fluctuations are consistent with drift velocity dispersion on this length scale.We study the performance of spin-component-scaled second-order Møller-Plesset perturbation theory (SCS-MP2) for the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional covalent and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-MP2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute errors of 0.015 (0.017) Å for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a reparameterization of the spin-scaling parameters and find that the optimal parameters for these solids are very similar to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future applications to surface chemistry on insulators.In this work, we study the Wigner localization of interacting electrons that are confined to a quasi-one-dimensional harmonic potential using accurate quantum chemistry approaches. We demonstrate that the Wigner regime can be reached using small values of the confinement parameter. To obtain physical insight in our results, we analyze them with a semi-analytical model for two electrons. https://www.selleckchem.com/products/e-7386.html Thanks to electronic-structure properties such as the one-body density and the particle-hole entropy, we are able to define a path that connects the Wigner regime to the Fermi-gas regime by varying the confinement parameter. In particular, we show that the particle-hole entropy, as a function of the confinement parameter, smoothly connects the two regimes. Moreover, it exhibits a maximum that could be interpreted as the transition point between the localized and delocalized regimes.We present an implementation of the B term of Magnetic Circular Dichroism (MCD) within the Algebraic Diagrammatic Construction (ADC) scheme of the polarization propagator and its Intermediate State Representation. As illustrative results, the MCD spectra of the ADC variants ADC(2), ADC(2)-x, and ADC(3) of the molecular systems uracil, 2-thiouracil, 4-thiouracil, purine, hypoxanthine 1,4-naphthoquinone, 9,10-anthraquinone, and 1-naphthylamine are computed and compared with results obtained by using the Resolution-of-Identity Coupled-Cluster Singles and Approximate Doubles method, with literature Time-Dependent Density Functional Theory results, and with available experimental data.This Perspective presents a comprehensive account of the dissipaton theories developed in our group since 2014, including the physical picture of dissipatons and the phase-space dissipaton algebra. The dissipaton-equation-of-motion-space (DEOM-space) formulations cover the Schrödinger picture, the Heisenberg picture, and further the imaginary-time DEOM. Recently developed are the dissipaton theories for studying equilibrium and nonequilibrium thermodynamic mixing processes. The Jarzynski equality and Crooks relation are accurately reproduced numerically. It is anticipated that dissipaton theories would remain essential toward a maturation of quantum mechanics of open systems.Vibronic interactions in the ground and two excited states of the imidazole radical cation, X2A″ (π-1), A2A' (nσ-1), and B2A″ (π-1), and the associated nuclear dynamics were studied theoretically. The results were used to interpret the recent photoelectron measurements [M. Patanen et al., J. Chem. Phys. 155, 054304 (2021)]. The present high-level electronic structure calculations employing, in particular, the single, double, and triple excitations and equation-of-motion coupled-cluster method accounting for single and double excitation approaches and complete basis set extrapolation technique for the evaluation of the vertical ionization energies of imidazole indicate that the A 2A' and B 2A″ states are very close in energy and subject to non-adiabatic effects. Our modeling confirms the existence of pronounced vibronic coupling of the A 2A' and B 2A″ states. Moreover, despite the large energy gap of nearly 1.3 eV, the ground state X 2A″ is efficiently coupled to the A 2A' state. The modeling was performed within the framework of the three-state linear vibronic coupling problem employing Hamiltonians expressed in a basis of diabatic electronic states and parameters derived from ab initio calculations.

Autoři článku: Armstrongmolina2536 (Schultz Parks)