Andersenfischer8052

Z Iurium Wiki

In a multiple regression analysis, only visuospatial function at 7-months follow-up was a significant predictor of fatigue 10 years after stroke onset [F = 23.07, p less then 0.009], with adjusted (R2 = 0.815) i.e., higher scores on Block design were associated with more fatigue. Conclusion Our results extended the time course of post-stroke fatigue up to 10 years after stroke onset. The participants with more fatigue performed better in cognitive assessments and daily activity, which indicated dissociation between fatigue and fatigability among stroke patients. C381 Visuospatial function at the sub-acute phase predicted independently late post-stroke fatigue. This may offer a broad time window for rehabilitation and information about fatigue. The clinical implications of the current findings are worth to be studied further.Aim To determine the predictive value of plasma neurofilament light protein (NfL) as a prognostic marker for outcomes in babies who have undergone therapeutic hypothermia (TH) for hypoxic ischemic encephalopathy (HIE). Method NfL levels from three groups of term newborns were compared (1) those with mild HIE who did not receive TH, (2) newborns treated with TH who had minimal or no brain injury on MRI, and (3) newborns treated with TH who had substantial brain injury on MRI. Follow-up outcomes were collected from 18 months onward. Results Follow-up was available for 33/37 (89%) of children. A cutoff NfL level >436 pg/ml after rewarming (median age 98 h) was associated with adverse outcome with a diagnostic sensitivity 75%, specificity 77%, PPV 75%, and NPV 77%. NfL levels at earlier time points were not predictive of outcome. Interpretation This pilot study shows that persistently raised plasma NfL levels after rewarming are associated with adverse outcomes in babies with HIE who have undergone TH.Introduction Cerebral venous sinus thrombosis (CVST) is a rare disease that generally accounts for just 1% of all strokes. Of the multiple risk factors that have been identified, the most common are genetic or acquired thrombophilia and the use of oral contraceptives, while the less common include local infections and mechanical causes. Thyroid diseases have been described as rare risk factors for CVST ( less then 2% of all cases), without exact knowledge of the underlying pathophysiology. This retrospective study aimed to re-evaluate the relevance of thyroid disease as risk factor for CVST, with particular emphasis on hyperthyroidism. Patients and Methods Confirmed cases of CVST were (re-)evaluated in terms of risk factors including thyroid parameters. Results were compared to previous data from the International Study on CVST. Results Between 1996 and 2016, 182 patients with confirmed CVST were treated in our hospital with a median age of 44 years and a female proportion of 74.7%. Genetic or acquired thrombophilia along with the use of oral contraceptives were found to be the most common risk factors. Thyroid diseases were present in 20.9% of CVST patients; this included patients with previous (9.9%) and current thyroid dysfunction (11%). Discussion and Conclusions Thyroid diseases may represent a more common risk factor for CVST than previously described. This holds true even if patients with current thyroid dysfunction are purely taken into account. However, 58% of patients had more than one additional risk factor, suggesting a multifactorial hypercoagulability. Clinical Trials Register Registered at the German Clinical Trials Register http//www.drks.de, DRKS00017044.Background Deep brain stimulation (DBS) has become a standard treatment for advanced stages of Parkinson's disease, essential tremor, and dystonia. In addition to the correct surgical device implantation, effective programming is regarded to be the most important factor for clinical outcome. Despite established strategies for adjusting neurostimulation, DBS programming remains time- and resource-consuming. Although kinematic and neuronal biosignals have recently been examined as potential feedback for closed-loop DBS (CL-DBS), there is an ongoing need for programming strategies to adapt the stimulation parameters and electrode configurations accurately and effectively. Methods Here, we tested the usefulness of a patient-rated visual analog scale (VAS) for real-time adjustment of DBS parameters. The stimulation parameters (contact and amplitude) in Parkinson's patients with STN-DBS (n = 17) were optimized based on the patient's subjective VAS rating. A Minkowski distance (Md) was calculated to compare the individual combination of contact selection and amplitude to the stimulation parameters that resulted from classical programming based on clinical signs and symptoms. Results We found no statistically significant difference between VAS-based and classical programming in regard to the specific contact or amplitude used or in regard to the clinical disease severity (UPDRS). Conclusions Our data suggest that VAS-based and classical programming strategies both lead to similar short-term results. Although further research will be required to assess the validity of VAS-based DBS programming, our results support the investigation of the patient's subjective rating as an additional and valid feedback signal for individualized DBS adjustment.The characteristics and state of knowledge of bioelectric signals such as ECG, EEG, and EMG are initially discussed. This serves as the basis for exploration of the degree of scholastic coverage and understanding of the level of clinical acceptance of respective bioelectric signal subtypes during the last 60 or so years. The review further proceeds to discuss surface EMG (sEMG). The status of the field in terms of teaching and academic training related to sEMG is examined, and its clinical acceptance in several areas of medicine and kinesiology, including neurology, psychology, psychiatry, physiatry, physical medicine and rehabilitation, biomechanics and motor control, and gnathology, is evaluated. A realistic overview of the clinical utility of the measurement of sEMG signals and their interpretation and usage, as well as of perspectives on its development, are then provided. The main focus is on the state of the field in Croatia. EMG signals are viewed as "windows" into the function of the neuro-muscular system, a complex and hierarchically organized system that controls human body posture and gross body movement. New technical and technological means to enable the detection and measurement of these signals will contribute to increased clinical acceptance, provided current scientific, educational, and financial obstacles can be removed.Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.Background and Purpose Non-traumatic intracerebral hemorrhage (ICH) in younger population is a relatively rare event but is associated with considerable mortality and poor functional outcome. Imaging plays a crucial role in determining the underlying cause and guide treatment of ICH. In up to 41% of patients in prior studies, the underlying cause remained elusive. However, the usage of MRI as part of diagnostic work-up was scanty. We aimed to analyze MRI findings of ICH in younger patients and assess specificity and sensitivity of MRI in detecting structural or local underlying causes of ICH. Methods We included patients aged 15-49 years with first-ever ICH identified from a prospective hospital discharge registry, 2000-2010. All study patients underwent MRI within 3 months of ICH. Imaging data was analyzed by a senior neuroradiologist blinded to final clinical diagnosis. We calculated the diagnostic accuracy of MRI in detecting structural/local underlying causes. Results Of our 116 patients (median age, 39; 67% males), structural/local causes were the leading causes of ICH (50.0%), and of these, bleeding cavernomas (23.3%) were the most frequent followed by arteriovenous malformations (12.9%), cerebral venous thrombosis (CVT) (7.8%), brain tumors (5.2%), and moyamoya disease (0.9%). Lobar location of ICH was more prevalent in younger patients. MRI was highly sensitive (90.0%; 95% confidence interval, 79.5-96.2%) for detection of structural/local causes compared with angiographic imaging (55.6%; 95% CI, 40.0-70.4%), while MRI was less specific (87.3%; 95% CI, 75.5-94.7%) for structural/local causes, compared with angiographic imaging (97.4%; 95% CI, 86.5-99.9%). Conclusion MRI was highly sensitive for the detection of structural and local causes underlying ICH in young adults. Thus, MRI should be considered in the diagnostic work-up of all young ICH patients to enable targeted secondary prevention.Chronic subdural hematoma (cSDH) is a common disease process associated with significant morbidity that occurs most often in elderly patients. Asymptomatic patients are typically treated conservatively, with surgical intervention reserved for patients with symptomatic and/or large hematomas that cause brain compression. However, conservatively managed cSDH cases frequently progress, and surgical evacuation of cSDH is associated with high rates of complication and recurrence. Recently, successful treatment of cSDH via middle meningeal artery (MMA) embolization has been reported in small case series and case reports. This article reviews the existing literature on MMA embolization for cSDH and discusses the need for randomized control trials and/or large prospective studies to establish the efficacy of MMA embolization for this disease.Importance Corona virus disease 2019 (COVID-19) has long latent period, strong infectivity, and non-specific symptoms and signs in the upper respiratory tract. Some initial neurological symptoms appear, including dizziness, headache, seizures, slurred speech, disturbance of consciousness, and limb paralysis among a few COVID-19 patients, which share similar manifestations with central nervous system (CNS) infection. Improving the diagnostic efficiency of suspected CNS infection patients on the basis of preventing and controlling COVID-19 plays a key role in preventing nosocomial and cross infections. This study intends to formulate a hospital emergency management system of fastlane treatment of CNS infection for epidemic prevention and control, aiming at providing references and guidelines for the government and medical institutions to improve the efficiency of treating CNS infection patients in the clinical practice during COVID-19. Observations This study formulated a framework of a fastlane treatment of CNS infection based on the cooperation of resources and experience, aiming at the key and difficult problems faced by the hospital emergency management system during the COVID-19 outbreak in Changsha, China.

Autoři článku: Andersenfischer8052 (Martinussen Fowler)