Alsstevenson9345

Z Iurium Wiki

Under specific circumstances, a commercially available CDS tool was used in partnership with a private payer and a radiology benefits management company to expedite prior authorization of outpatient advanced imaging examination orders deemed likely to be appropriate by multispecialty professional guidelines.Abnormal human trabecular meshwork (HTM) cell function and extracellular matrix (ECM) remodeling contribute to HTM stiffening in primary open-angle glaucoma (POAG). Most current cellular HTM model systems do not sufficiently replicate the complex native three dimensional (3D) cell-ECM interface, limiting their use for investigating POAG pathology. Tissue-engineered hydrogels are ideally positioned to overcome shortcomings of current models. Cobimetinib Here, we report a novel biomimetic HTM hydrogel and test its utility as a POAG disease model. HTM hydrogels were engineered by mixing normal donor-derived HTM cells with collagen type I, elastin-like polypeptide and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Glaucomatous conditions were induced with dexamethasone (DEX), and effects of the Rho-associated kinase (ROCK) inhibitor Y27632 on cytoskeletal organization and tissue-level function, contingent on HTM cell-ECM interactions, were assessed. DEX exposure increased HTM hydrogel contractility, f-actin and alpha smooth muscle actin abundance and rearrangement, ECM remodeling, and fibronectin deposition - all contributing to HTM hydrogel condensation and stiffening consistent with glaucomatous HTM tissue behavior. Y27632 treatment produced precisely the opposite effects and attenuated the DEX-induced pathologic changes, resulting in HTM hydrogel relaxation and softening. For model validation, confirmed glaucomatous HTM (GTM) cells were encapsulated; GTM hydrogels showed increased contractility, fibronectin deposition, and stiffening vs. normal HTM hydrogels despite reduced GTM cell proliferation. We have developed a biomimetic HTM hydrogel model for detailed investigation of 3D cell-ECM interactions under normal and simulated glaucomatous conditions. Its bidirectional responsiveness to pharmacological challenge and rescue suggests promising potential to serve as screening platform for new POAG treatments with focus on HTM biomechanics.

Complement activation is associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). Fibroblast growth factor 2 (FGF2) and membrane attack complex (MAC) are present in eyes of patients with CNV. Herein, we investigated the effect of complement activation on FGF2 release in human retinal pigment epithelial (RPE) cells.

Cultured human RPE cells were primed with an anti-RPE antibody and then treated with C1q-depleted human serum in the presence or absence of Tec kinases inhibitor (LFM-A13). 38 cytokines/chemokines levels were measured by Luminex technology. Secretion of FGF2 and interleukin (IL)-6 was assessed by ELISA. Tec protein was measured by Western blot. mRNA expression of FGF2, chemokine (C-X-C motif) ligand 1 (CXCL-1), and family members of Tec kinases was evaluated by qPCR. Cell viability and MAC deposition were determined by WST-1 assay and flow cytometry, respectively.

Complement activation caused increased FGF2 and IL-6 release. FGF2 was released when C6-depleated FGF2 release. This information suggests a role for complement activation to mediate neovascularization in conditions such as AMD, and may elucidate potential therapeutic targets.Since the introduction of femtosecond laser (FS) systems for corneal flap creation in laser-assisted in-situ keratomileusis there have been numerous applications for FS laser in corneal surgery. This manuscript details the utility of FS lasers in corneal surgical procedures including refractive laser surgeries, intracorneal ring segment tunnels, presbyopic treatments, and FS-assisted keratoplasty. We also review the role of FS lasers in diagnostic procedures such as two photon excitation fluorescence and second harmonic generation.

To compare the three-dimensional (3D) morphology of the deep load-bearing structures of the human optic nerve head (ONH) as revealed in vivo by spectral domain optical coherence tomography (SDOCT) with ex vivo quantitative 3D histology.

SDOCT imaging of the ONH was performed in six eyes from three brain-dead organ donors on life-support equipment awaiting organ procurement (in vivo conditions). Following organ procurement (ex vivo conditions), the eyes were enucleated and underwent a pars plana vitrectomy followed by pressurization to physiologic IOP and immersion fixation. Ex vivo ONH morphology was obtained from high-fidelity episcopic fluorescent 3D reconstruction. Morphologic parameters of the observed ONH canal geometry and peripapillary choroid, as well as the shape, visibility and depth of the lamina cribrosa were compared between ex vivo and in vivo measurements using custom software to align, scale, and manually delineate the different regions of the ONH.

There was significant correspondence being models and biomarkers based on ex vivo imaging of fixed tissue. Lack of visibly of most of the lamina surface in SDOCT images is an important limitation to metrics and biomarkers based on in vivo images of the ONH deep tissues.

Morphologic parameters by SDOCT imaging of the deep ONH showed promising correspondence to histology metrics. Small but significant shrinkage artifact, along with large effects of exsanguination of the choroid, was seen in the ex vivo reconstructions of fixed tissues that may impact the quantification of ex vivo histoarchitecture, and this should be considered when developing models and biomarkers based on ex vivo imaging of fixed tissue. Lack of visibly of most of the lamina surface in SDOCT images is an important limitation to metrics and biomarkers based on in vivo images of the ONH deep tissues.

Fibrillin-1 and -2 are major components of tissue microfibrils that compose the ciliary zonule and cornea. While mutations in human fibrillin-1 lead to ectopia lentis, a major manifestation of Marfan syndrome (MFS), in mice fibrillin-2 can compensate for reduced/lack of fibrillin-1 and maintain the integrity of ocular structures. Here we examine the consequences of a heterozygous dominant-negative mutation in the Fbn1 gene in the ocular system of the mgΔ

mouse model for MFS.

Eyes from mgΔ

and wild-type mice at 3 and 6 months of age were analyzed by histology. The ciliary zonule was analyzed by scanning electron microscopy (SEM) and immunofluorescence.

Mutant mice presented a significantly larger distance of the ciliary body to the lens at 3 and 6 months of age when compared to wild-type, and ectopia lentis. Immunofluorescence and SEM corroborated those findings in MFS mice, revealing a disorganized mesh of microfibrils on the floor of the ciliary body. Moreover, mutant mice also had a larger volume of the anterior chamber, possibly due to excess aqueous humor.

Autoři článku: Alsstevenson9345 (Thompson Jonassen)