Almeidayork2425

Z Iurium Wiki

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.Apolipoprotein E4 (APOE4) is the greatest known genetic risk factor for developing sporadic Alzheimer's disease. How the interaction of APOE4 microglia with neurons differs from microglia expressing the disease-neutral APOE3 allele remains unknown. Here, we employ CRISPR-edited induced pluripotent stem cells (iPSCs) to dissect the impact of APOE4 in neuron-microglia communication. Our results reveal that APOE4 induces a lipid-accumulated state that renders microglia weakly responsive to neuronal activity. By examining the transcriptional signatures of APOE3 versus APOE4 microglia in response to neuronal conditioned media, we established that neuronal cues differentially induce a lipogenic program in APOE4 microglia that exacerbates pro-inflammatory signals. Through decreased uptake of extracellular fatty acids and lipoproteins, we identified that APOE4 microglia disrupts the coordinated activity of neuronal ensembles. These findings suggest that abnormal neuronal network-level disturbances observed in Alzheimer's disease patients harboring APOE4 may in part be triggered by impairment in lipid homeostasis in non-neuronal cells.Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited resource for cell therapies, but the derivation of mature cell types remains challenging. The histone methyltransferase EZH1 is a negative regulator of lymphoid potential during embryonic hematopoiesis. Here, we demonstrate that EZH1 repression facilitates in vitro differentiation and maturation of T cells from iPSCs. Coupling a stroma-free T cell differentiation system with EZH1-knockdown-mediated epigenetic reprogramming, we generated iPSC-derived T cells, termed EZ-T cells, which display a highly diverse T cell receptor (TCR) repertoire and mature molecular signatures similar to those of TCRαβ T cells from peripheral blood. Upon activation, EZ-T cells give rise to effector and memory T cell subsets. When transduced with chimeric antigen receptors (CARs), EZ-T cells exhibit potent antitumor activities in vitro and in xenograft models. learn more Epigenetic remodeling via EZH1 repression allows efficient production of developmentally mature T cells from iPSCs for applications in adoptive cell therapy.Fibroblasts are highly dynamic cells that play a central role in tissue repair and fibrosis. However, the mechanisms by which they contribute to both physiologic and pathologic states of extracellular matrix deposition and remodeling are just starting to be understood. In this review article, we discuss the current state of knowledge in fibroblast biology and heterogeneity, with a primary focus on the role of fibroblasts in skin wound repair. We also consider emerging techniques in the field, which enable an increasingly nuanced and contextualized understanding of these complex systems, and evaluate limitations of existing methodologies and knowledge. Collectively, this review spotlights a diverse body of research examining an often-overlooked cell type-the fibroblast-and its critical functions in wound repair and beyond.In this issue of Cell Stem Cell, Victor et al. reveal that human microglia harboring the Alzheimer's disease risk allele APOE4 have altered lipid metabolism and cellular activation. This dampens neuronal network activity, underscoring the importance of these brain-resident immune cells and highlighting a novel pathway for therapeutic intervention.In the current issue of Cell Stem Cell, Bogeska et al. demonstrate that repeated exposures to inflammation cause indelible and specific functional compromise and accelerated aging of long-term hematopoietic stem cells (LT-HSCs). This study proposes the notion that the cumulative inflammatory events over the course of an organism's lifespan may irreversibly damage LT-HSCs.In this issue of Cell Stem Cell, Jing et al. inhibit EZH1 expression in a system that supports mature T cell development from iPSCs in vitro. The authors efficiently generate T cells that are highly functional against tumors.It is unclear whether the secretion of glucagon is regulated by an alpha-cell-intrinsic mechanism and whether signal recognition by the mitochondrial metabolism plays a role in it. To measure changes of the cytosolic ATP/ADP ratio, single alpha-cells and beta-cells from NMRI mice were adenovirally transduced with the fluorescent indicator PercevalHR. The cytosolic Ca2+ concentration ([Ca2+]i) was measured by use of Fura2 and the mitochondrial membrane potential by use of TMRE. Perifused islets were used to measure the secretion of glucagon and insulin. At 5 mM glucose, the PercevalHR ratio in beta-cells was significantly lower than in alpha-cells. Lowering glucose to 1 mM decreased the ratio to 69% within 10 minutes in beta-cells, but only to 94% in alpha-cells. In this situation, 30 mM glucose, 10 mM alpha-ketoisocaproic acid, and 10 mM glutamine plus 10 mM BCH (a nonmetabolizable leucine analogue) markedly increased the PercevalHR ratio in beta-cells. In alpha-cells, only glucose was slightly effective. However, none of the nutrients increased the mitochondrial membrane potential in alpha-cells, whereas all did so in beta-cells. The kinetics of the PercevalHR increase were reflected by the kinetics of [Ca2+]i. increase in the beta-cells and insulin secretion. Glucagon secretion was markedly increased by washing out the nutrients with 1 mM glucose, but not by reducing glucose from 5 mM to 1 mM. This pattern was still recognizable when the insulin secretion was strongly inhibited by clonidine. It is concluded that mitochondrial energy metabolism is a signal generator in pancreatic beta-cells, but not in alpha-cells.We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.The surprising discovery that the diatomic gas nitric oxide (NO) is generated by mammalian cells and serves to regulate a multitude of physiological processes has continued to fascinate biologists for almost four decades. The biochemistry of NO is complex, and novel insights into the control of NO biosynthesis and mechanisms of signal transduction are continuously emerging. NO is a key regulator of cardiovascular function, metabolism, neurotransmission, immunity, and more, and aberrant NO signaling is a central feature of many major disorders including cardiovascular disease, diabetes, and cancer. Here, we discuss the basics of NO biology emphasizing recent advances in the field including novel means of increasing NO bioactivity with therapeutic and nutritional implications.A long-standing challenge in genomics has been to identify causal genes within rare copy-number variant regions that are intolerant to altered dosage. In this issue, Collins et al. perform a meta-analysis of almost a million individuals to identify dosage-sensitive segments and genes conferring risk for a range of disease phenotypes.Immune checkpoint blockade is effective in treating many human cancers. In this issue of Cell, Luoma et al. show that tissue-resident memory T cells in head and neck cancers rapidly respond to immune checkpoint blockade, and they identify specific CD8+ T cells in pretreatment blood that predict pathologic tumor regression.Glioblastoma is a lethal, diffusely invasive brain cancer that is robustly regulated by the activity of the brain itself, in part through neuron-to-glioma synaptic communication. Venkataramani et al. have conceptually advanced understanding of glioblastoma interactions with neural circuits, demonstrating that conduction of electrochemical signals via neuron-to-glioma synapses drives glioma invasion.

In young children with early onset ataxia (EOA), quantitative rating of ataxia by the Scale for Assessment and Rating of Ataxia (SARA) is longitudinally influenced by the physiological age effect on motor coordination. To enable longitudinal quantitative interpretation of ataxia by SARA in children with EOA, the EPNS ataxia working group has previously determined SARA-scores in typically developing children (4-16 years of age). In toddlers, this information is still lacking. We therefore aimed to investigate the feasibility and reliability of SARA-scores in typically developing toddlers.

In 57 typically developing toddlers (2-4 years), we aimed to determine the 1. feasibility of SARA-scores, 2. age-related pre-requisites to obtain SARA-scores in toddlers over all domains, 3. SARA-score reliability, 4. mathematical age connection of SARA-scores in toddlers and older children.

In typically developing toddlers, the feasibility of SARA is strongly age-dependent (p<.000). After computing compensations for two age-related, unfeasible and therefore un-assessable kinetic subtasks and after allowing the videotaping of non-kinetic SARA sub-task performances at home, the SARA was fully reliably assessable in all (n=57) toddlers (ICC=0.

Autoři článku: Almeidayork2425 (Merrill Meincke)