Allredkeating1586
The threat posed by the presence of artificial volatile organic compounds (VOCs) in the environment is a widely acknowledged fact, both for environmental issues and human health concerns. Ever-increasing production requires the continuous development of technologies toward the removal of these substances. In recent years, metal-organic frameworks (MOFs) have shown a great promise toward the capture of VOCs, but their stability in humid conditions still remains a major challenge, thus hindering their widespread development. To tackle this obstacle, we designed a 3-dimensional and porous MOF, named SION-82, for the capture of small aromatic VOCs, relying solely on π-π interactions. SION-82 captures benzene efficiently (107 mg/g) in dry conditions, and no uptake decrease was observed in the presence of high relative humidity for at least six cycles. Unlike HKUST-1 and MOF-74(Co), SION-82 possesses two vital characteristics toward sustainable benzene capture under humid conditions moisture stability and reusability. In addition, SION-82 captures benzene under humid conditions more efficiently compared to the hydrolytically stable UiO-66, highlighting the impact of having an active site for benzene capture that is not affected by water. SION-82 can additionally capture other aromatic VOCs, showing pyridine and thiophene uptake capacities of 140 and 160 mg/g, respectively.We report a biodegradable fluorescent theranostic nanoprobe design strategy for simultaneous visualization and quantitative determination of antibacterial activity for the treatment of bacterial infections. Cationic-charged polycaprolactone (PCL) was tailor-made through ring-opening polymerization methodology, and it was self-assembled into well-defined tiny 5.0 ± 0.1 nm aqueous nanoparticles (NPs) having a zeta potential of +45 mV. Excellent bactericidal activity at 10.0 ng/mL concentration was accomplished in Gram-negative bacterium Escherichia coli (E. coli) while maintaining their nonhemolytic nature in mice red blood cells (RBC) and their nontoxic trend in wild-type mouse embryonic fibroblast cells with a selectivity index of >104. Electron microscopic studies are evident of the E. coli membrane disruption mechanism by the cationic NP with respect to their high selectivity for antibacterial activity. Anionic biomarker 8-hydroxy-pyrene-1,3,6-trisulfonic acid (HPTS) was loaded in the cationic PCL NP via eltimate the real-time antibacterial activity. Time-dependent bactericidal activity was coupled with selective photoexcitation in a confocal microscope to demonstrate the proof-of-concept of the working principle of a theranostic probe in E. coli. This new theranostic nanoprobe creates a new platform for the simultaneous probing and treating of bacterial infections in a single nanodesign, which is very useful for a long-term impact in healthcare applications.A lack of knowledge on metal speciation in the microenvironment surrounding phytoplankton cells (i.e., the phycosphere) represents an impediment to accurately predicting metal bioavailability. Phycosphere pH and O2 concentrations from a diversity of algae species were compiled. For marine algae in the light, the average increases were 0.32 pH units and 0.17 mM O2 in the phycosphere, whereas in the dark the average decreases were 0.10 pH units and 0.03 mM O2, in comparison to bulk seawater. In freshwater algae, the phycosphere pH increased by 1.28 units, whereas O2 increased by 0.38 mM in the light. Equilibrium modeling showed that the pH alteration influenced the chemical species distribution (i.e., free ion, inorganic complexes, and organic complexes) of Al, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Sc, Sm, and Zn in the phycosphere, and the O2 fluctuation increased oxidation rates of Cu(I), Fe(II) and Mn(II) from 2 to 938-fold. The pH/O2-induced changes in phycosphere metal chemistry were larger for freshwater algae than for marine species. Reanalyses of algal metal uptake data in the literature showed that uptake of the trivalent metals (Sc, Sm and Fe), in addition to divalent metals, can be better predicted after considering the phycosphere chemistry.Diblock oligosaccharides based on renewable resources allow for a range of new but, so far, little explored biomaterials. Coupling of blocks through their reducing ends ensures retention of many of their intrinsic properties that otherwise are perturbed in classical lateral modifications. Chitin is an abundant, biodegradable, bioactive, and self-assembling polysaccharide. However, most coupling protocols relevant for chitin blocks have shortcomings. Here we exploit the highly reactive 2,5-anhydro-d-mannose residue at the reducing end of chitin oligomers obtained by nitrous acid depolymerization. Subsequent activation by dihydrazides or dioxyamines provides precursors for chitin-based diblock oligosaccharides. These reactions are much faster than for other carbohydrates, and only acyclic imines (hydrazones or oximes) are formed (no cyclic N-glycosides). click here α-Picoline borane and cyanoborohydride are effective reductants of imines, but in contrast to most other carbohydrates, they are not selective for the imines in the present case. This could be circumvented by a simple two-step procedure. Attachment of a second block to hydrazide- or aminooxy-functionalized chitin oligomers turned out to be even faster than the attachment of the first block. The study provides simple protocols for the preparation of chitin-b-chitin and chitin-b-dextran diblock oligosaccharides without involving protection/deprotection strategies.Hydroboration of alkenes is a classical reaction in organic synthesis in which alkenes react with boranes to give alkylboranes with subsequent oxidation resulting in alcohols. The double bond (π-bond) of alkenes can be readily reacted with boranes owing to its high reactivity. However, the single bond (σ-bond) of alkanes has never been reacted. To pursue the development of σ-bond cleavage, we selected cyclopropanes as model substrates since they present a relatively weak σ-bond. Herein, we describe an iridium-catalyzed hydroboration of cyclopropanes, resulting in β-methyl alkylboronates. These unusually branched boronates can be derivatized by oxidation or cross-coupling chemistry, accessing "designer" products that are desired by practitioners of natural product synthesis and medicinal chemistry. Furthermore, mechanistic investigations and theoretical studies revealed the enabling role of the catalyst.