Aldridgedowney1860
In the latter, defensin directly binds the ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry. Together, our results indicate that mosquito defensin plays an important role in facilitating JEV infection and potential transmission.Guanylate binding protein 5 (GBP5) belongs to the GTPase subfamily, which is mainly induced by interferon gamma (IFN-γ) and is involved in many important cellular processes, including inflammasome activation and innate immunity against a wide variety of microbial pathogens. However, it is unknown whether GBP5 inhibits respiratory syncytial virus (RSV) infection. In this study, we identified GBP5 as an effector of the anti-RSV activity of IFN-γ and found that in children, the weaker immune response, especially the weaker IFN-γ response and the decreased GBP5 expression, leads to RSV susceptibility. Furthermore, we revealed that GBP5 reduced the cell-associated levels of the RSV small hydrophobic (SH) protein, which was identified as a viroporin. In contrast, overexpression of the SH protein rescued RSV replication in the presence of GBP5. The GBP5-induced decrease in intracellular SH protein levels is because GBP5 promotes the release of the SH protein into the cell culture. Moreover, the GBP5 C583A mutants wiexploring the pathogenic mechanisms of RSV and identifying essential genes which inhibit RSV infection are necessary to develop an effective strategy to control RSV infection. Here, we report that the IFN-inducible gene GBP5 potently inhibits RSV replication by reducing the cell-associated levels of the RSV small hydrophobic (SH) protein, which is a viroporin. In contrast, the RSV G protein was shown to upregulate the expression of the DZIP3 protein, an E3 ligase that degrades GBP5 through the proteasomal pathway. Our study provides important information for the understanding of the pathogenic mechanisms of RSV and host immunity as well as the complicated interplay between the virus and host.Since the first outbreak in 2013, the influenza A (H7N9) virus has continued emerging and has caused over five epidemic waves. Suspected antigenic changes of the H7N9 virus based on hemagglutination inhibition (HI) assay during the fifth outbreak have prompted the update of H7N9 candidate vaccine viruses (CVVs). In this study, we comprehensively compared the serological cross-reactivities induced by the hemagglutinins (HAs) of the earlier CVV A/Anhui/1/2013 (H7/AH13) and the updated A/Guangdong/17SF003/2016 (H7/GD16). We found that although H7/GD16 showed poor HI cross-reactivity to immune sera from mice and rhesus macaques vaccinated with either H7/AH13 or H7/GD16, the cross-reactive neutralizing antibodies between H7/AH13 and H7/GD16 were comparably high. Passive transfer of H7/AH13 immune sera also provided complete protection against the lethal challenge of H7N9/GD16 virus in mice. Analysis of amino acid mutations in the HAs between H7/AH13 and H7/GD16 revealed that L226Q substitution increases the HA binGuangdong/17SF003/2016 (H7/GD16) increased the viral receptor-binding avidity to red blood cells with no impact on the antigenicity of H7N9 virus. Although immune sera raised by an earlier vaccine strain (H7/AH13) showed poor HI titers against H7/GD16, the H7/AH13 immune sera had potent cross-neutralizing antibody titers against H7/GD16 and could provide complete passive protection against H7N9/GD16 virus challenge in mice. Our study highlights that receptor-binding avidity might lead to biased antigenic evaluation by using the HI assay. Other serological assays, such as the microneutralization (MN) assay, should be considered a complementary indicator for analysis of antigenic variation and selection of influenza CVVs.SERINC5 is a 10-transmembrane-domain cellular protein that is incorporated into budding HIV-1 particles and reduces HIV-1 infectivity by inhibiting virus-cell fusion. HIV-1 susceptibility to SERINC5 is determined by sequences in the viral Env glycoprotein gp120, and the antiviral effect of SERINC5 is counteracted by the viral accessory protein Nef. While the precise mechanism by which SERINC5 inhibits HIV-1 infectivity is unclear, previous studies have suggested that SERINC5 affects Env conformation. To define the effects of SERINC5 on Env conformation, we quantified the binding of HIV-1 particles to immobilized Env-specific monoclonal antibodies. We observed that SERINC5 reduced the binding of HIV-1 particles bearing a SERINC5-susceptible Env to antibodies that recognize the V3 loop, a soluble CD4 (sCD4)-induced epitope, and an N-linked glycan. In contrast, SERINC5 did not alter the capture of HIV-1 particles bearing the SERINC5-resistant Env protein. Moreover, the effect of SERINC5 on antibody-dependent virus capture was abrogated by Nef expression. Our results indicate that SERINC5 inhibits HIV-1 infectivity by altering the conformation of gp120 on virions and/or physical masking of specific HIV-1 Env epitopes.IMPORTANCE SERINC5 is a host cell protein that inhibits the infectivity of HIV-1 by a novel and poorly understood mechanism. Here, we provide evidence that the SERINC5 protein alters the conformation of the HIV-1 Env proteins and that this action is correlated with SERINC5's ability to inhibit HIV-1 infectivity. Defining the specific effects of SERINC5 on the HIV-1 glycoprotein conformation may be useful for designing new antiviral strategies targeting Env.Zika virus (ZIKV) remains a potentially significant public health concern because it can cause teratogenic effects, such as microcephaly in newborns and neurological disease, like Guillain-Barré syndrome. Together with efforts to develop a vaccine, the discovery of antiviral molecules is important to control ZIKV infections and to prevent its most severe symptoms. Here, we report the development of small nonnucleoside inhibitors (NNIs) of ZIKV RNA-dependent RNA polymerase (RdRp) activity. These NNIs target an allosteric pocket (N pocket) located next to a putative hinge region between the thumb and the palm subdomains that was originally described for dengue virus (DENV) RdRp. We first tested the activity of DENV RdRp N-pocket inhibitors against ZIKV RdRp, introduced chemical modifications into these molecules, and assessed their potency using both enzymatic and cell-based assays. The most potent compound had a 50% inhibitory concentration value of 7.3 μM and inhibited ZIKV replication in a cell-based assay weplication by targeting the polymerase activity. High-resolution X-ray crystallographic structures of protein-inhibitor complexes demonstrated specific binding to an allosteric site within the polymerase, called the N pocket. This work paves the way for the future structure-based design of potent compounds specifically targeting ZIKV RNA polymerase activity.Methamphetamine, a potent psychostimulant, is a highly addictive drug commonly used by persons living with HIV (PLWH), and its use can result in cognitive impairment and memory deficits long after its use is discontinued. Although the mechanism(s) involved with persistent neurological deficits is not fully known, mitochondrial dysfunction is a key component in methamphetamine neuropathology. Specific mitochondrial autophagy (mitophagy) and mitochondrial fusion and fission are protective quality control mechanisms that can be dysregulated in HIV infection, and the use of methamphetamine can further negatively affect these protective cellular mechanisms. Here, we observed that treatment of human primary neurons (HPNs) with methamphetamine and HIV gp120 and Tat increase dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and neuronal degeneration. Methamphetamine and HIV proteins increased microtubule-associated protein 1 light chain 3 beta-II (LC3B-II) lipidation and induced sequestosome 1 (Smitochondrial fragmentation, and neuronal injury manifested by a reduction in neuronal network and connectivity. The use of NAC, a potent antioxidant, reversed the neurotoxic effects of HIV and methamphetamine, suggesting a novel approach to ameliorate the effects of HIV- and methamphetamine-associated cognitive deficits.Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Crus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.Rabies, caused by rabies virus (RABV), is an ancient zoonosis and still a major public health problem for humans, especially in developing countries. RABV can be recognized by specific innate recognition receptors, resulting in the production of hundreds of interferon-stimulated genes (ISGs), which can inhibit viral replication at different stages. Interferon-inducible GTPase 1 (IIGP1) is a mouse-specific ISG and belongs to the immunity-related GTPases (IRGs) family. IIGP is reported to constrain intracellular parasite infection by disrupting the parasitophorous vacuole membrane. However, the role of IIGP1 in restricting viral replication has not been reported. In this present study, we found that IIGP1 was upregulated in cells and mouse brains upon RABV infection. Overexpression of IIGP1 limited RABV replication in cell lines and reduced viral pathogenicity in a mouse model. Bay 11-7085 clinical trial Consistently, deficiency of IIGP1 enhanced RABV replication in different parts of mouse brains. Furthermore, we found that IIGP1 could tion of P protein. Our study provides the first evidence that IIGP1 functions in limiting viral infection and provides a basis for comprehensive understanding of this important ISG.