Ahmadmackay5056

Z Iurium Wiki

The exploitation of self-assembled coatings comprising graphite oxide (GO) nanoplates has been recently demonstrated as a promising route to improve the fire safety of flexible polyurethane (PU) foams. However, limited knowledge has been gathered on the correlations between the physical and chemical properties of different GO grades and the performance obtained in this application. This work addresses the effects of the nanoparticle dimensions on the layer-by-layer (LbL) assembly and flame-retardant properties of GO-based coatings deposited on PU foams. To this aim, three GO bearing different lateral sizes and thicknesses were selected and LbL-assembled with chitosan (CHIT). Coating growth and morphology were evaluated by FTIR and FESEM, respectively. The resulting CHIT/GO assemblies were demonstrated to be capable of slowing down the combustion of the PU both in flammability and forced combustion tests. In addition, compressive stress/strain tests pointed out that the LbL-coated foams (22-24 kg/m3) could easily replace denser commercial PU foam (40-50 kg/m3) with weight reduction potentials in the transport field. These results are correlated with the properties of the employed GO. The production of assemblies characterized by a high density of CHIT/GO interfaces is identified as the main parameter controlling the FR efficiency and the mechanical properties of the coatings.Zinc oxide (ZnO) nano/microparticles (NPs/MPs) have been studied as antibiotics to enhance antimicrobial activity against pathogenic bacteria and viruses with or without antibiotic resistance. They have unique physicochemical characteristics that can affect biological and toxicological responses in microorganisms. Metal ion release, particle adsorption, and reactive oxygen species generation are the main mechanisms underlying their antimicrobial action. In this review, we describe the physicochemical characteristics of ZnO NPs/MPs related to biological and toxicological effects and discuss the recent findings of the antimicrobial activity of ZnO NPs/MPs and their combinations with other materials against pathogenic microorganisms. Current biomedical applications of ZnO NPs/MPs and combinations with other materials are also presented. This review will provide the better understanding of ZnO NPs/MPs as antibiotic alternatives and aid in further development of antibiotic agents for industrial and clinical applications.Durability is one important problem that pavement engineers need to address in pavement's long service life. Furthermore, easily recycled pavement materials, and safe and efficient pavement construction are also important areas for development in road engineering. For these reasons, a new asphalt steel plastic (ASP) pavement structure was proposed with an asphalt mixture forming the surface layer, and steel plate and plastic materials functioning as the main load-bearing layers. Based on a comprehensive performance review and cost-benefit analysis, stone mastic asphalt (SMA) is recommended to be used as the surface layer; and A656 steel plate and acrylonitrile butadiene styrene (ABS) plastic materials should be the main load-bearing layer, on top of a foundation layer made with graded crushed stones. A glass fiber reinforced polymer (GFRP) insulation layer is recommended for use between the steel plate and ABS. Mechanical properties of the ASP pavement were analyzed using the finite element method. Laboratory tests were conducted to verify the thermal insulation performance of GFRP, the high-temperature stability and the fatigue resistance of ASP pavement. Results show that some of the mechanical properties of ASP pavement (with a structure of 80 mm SMA asphalt mixture, 8 mm steel plate, 140 mm ABS and 200 mm crushed stones) are comparable with conventional long-life pavement (with 350 mm asphalt layer overlaying 400 mm graded crushed stones). Dynamic stability of the ASP slab specimens can reach 10,000 times/mm, and the fatigue life is about twice that of SMA. Besides, the ASP pavement can be prefabricated and assembled on-site, and thus can greatly improve construction efficiency. From the lifecycle perspective, ASP pavement has many advantages over traditional pavements, such as durability, lower environmental footprint and recyclability, making it is worth further research.Persons living with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) vary widely in terms of the severity of their illness. It is estimated that of those living with ME/CFS in the United States, about 385,000 are homebound. There is a need to know more about different degrees of being homebound within this severely affected group. The current study examined an international sample of 2138 study participants with ME/CFS, of whom 549 were severely affected (operationalized as 'Homebound'). A subsample of 89 very severely affected participants (operationalized as 'Homebound-bedridden') was also examined. The findings showed a significant association between severely and very severely affected participants within the post-exertional malaise (PEM) symptom domain. The implications of these findings are discussed.Novel zwitter-ionic nido-carboranyl azide 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was prepared by the reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 with NaN3. The solid-state molecular structure of nido-carboranyl azide was determined by single-crystal X-ray diffraction. 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was used for the copper(I)-catalyzed azide-alkyne cycloaddition with phenylacetylene, alkynyl-3β-cholesterol and cobalt/iron bis(dicarbollide) terminal alkynes to form the target 1,2,3-triazoles. The nido-carborane-cholesterol conjugate 9-3β-Chol-O(CH2)C-CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 with charge-compensated group in a linker can be used as a precursor for preparation of liposomes for Boron Neutron Capture Therapy (BNCT). A series of novel zwitter-ionic boron-enriched cluster compounds bearing a 1,2,3-triazol-metallacarborane-carborane conjugated system was synthesized. GDC-6036 mw Prepared conjugates contain a large amount of boron atom in the biomolecule and potentially can be used for BNCT.

Autoři článku: Ahmadmackay5056 (Cole Lockhart)