Adairhodges6396
15 (1.01, 1.31). In the solid fuel use subgroup analysis, use of solid fuels for cooking (HR, 1.12; 95% CI, 1.02-1.24) was associated with a higher incidence of depressive symptoms after adjustments while use for heating (HR, 1.05; 95% CI, 0.93-1.18) was not. Moreover, compared with persistent solid fuel users, switching from solid to clean fuels for cooking resulted in a lower risk of depressive symptoms before adjustments (HR, 0.82; 95% CI, 0.71-0.95) and a non-significant association (HR, 0.90; 95% CI, 0.77-1.04) afterwards.
The results suggest that household solid fuel use for cooking was associated with a higher incidence of depressive symptoms. Preventive strategies based on improving household cooking environment for depressive symptoms should be established.
The results suggest that household solid fuel use for cooking was associated with a higher incidence of depressive symptoms. Preventive strategies based on improving household cooking environment for depressive symptoms should be established.As the antibiotic pollution source in the environment, a large amount of biowastes generated from antibiotic fermentation manufacture needs proper disposal. Recycling the biowaste as resources and nutrients is of great interest. Besides, degradation or removal of antibiotics is indispensable for the reclamation of antibiotic manufacturing biowaste. To establish environmentally friendly disposal strategies for lincomycin manufacturing biowaste (LMB), we screened the microbial strains that could efficiently degrade lincomycin from the antibiotic wastewater treatment plant. Among them, three novel strains were identified as Bacillus subtilis (strain LMB-A), Rhodotorula mucilaginosa (strain LMB-D) and Penicillium oxalicum (strain LMB-E), respectively. LMB-A and LMB-D could degrade 92.69% and 74.05% of lincomycin with an initial concentration of 1117.55 mg/L in 144 h, respectively. The lincomycin degradation products were formed by the breakage of amide bond or losing N-demethyl/thiomethyl group from the pyrrolidine/pyranose ringcata cata catalyzed by the strains. Moreover, LMB-A could decontaminate LMB, and the decontaminated LMB could be used as a nitrogen source to culture salt-resistant bacteria and other useful microorganisms. LMB-A and LMB-D have the potential to be used for the bioremediation of water and soil polluted by lincomycin and its analogs. LMB-E could degrade 88.20% LMB after 144-h cultivation. In summary, this study gives an insight into the green disposal of LMB, and the established strategy has potential application for biotreatment of other antibiotic fermentation manufacturing biowastes.Cyantraniliprole is a novel diamide insecticide that acts upon the ryanodine receptor (RyR) and has broad application prospects. Accordingly, it is very important to evaluate the toxicity of cyantraniliprole to earthworms (Eisenia fetida) because of their vital role in maintaining a healthy soil ecosystem. In this study, an experiment was set up, using four concentrations (0.1, 1, 5, and 10 mg/kg) and solvent control group (0 mg/kg), to investigate the ecotoxicity of cyantraniliprole to earthworms. GPCR agonist Our results showed that, after 28 days of exposure to cyantraniliprole, both cocoon production and the number of juvenile earthworms had decreased significantly at concentrations of either 5 or 10 mg/kg. On day 14, we measured the activities of digestive enzymes and ion pumps in the intestinal tissues of earthworms. These results revealed that cyantraniliprole exposure caused intestinal damage in earthworm, specifically changes to its intestinal enzyme activity and calcium ion content. Cyantraniliprole could lead to proteins' carbonylation under the high-dose treatments (i.e., 5 mg/kg, 10 mg/kg). At the same time, we also found that cyantraniliprole can cause the abnormal expression of key functional genes (including HSP70, CAT, RYR, ANN, and CAM genes). Moreover, the transcriptomics data showed that exposure to cyantraniliprole would affect the synthesis of carbohydrates, proteins and lipids, as well as their absorption and transformation, while cyantraniliprole would also affect signal transduction. In general, high-dose exposure to cyantraniliprole causes reproductive toxicity, genotoxicity, and intestinal damage to earthworms.Himalayan mountains are subjected to the intensive and unjudicial application of chlorpyrifos (CP) in agricultural practices; hence it has spurred concerns over food safety and environmental consequences. These low-temperature mountainous regions are foremost ecosystems, representing the large-scale distribution of cold trapped CP residues. A bacterial consortium ECO-M was formed by isolating the CP degrading bacterial strains viz Agrobacterium tumefaciens strain ECO1, Cellulosimicrobium funkei strain ECO2, Shinella zoogloeoides strain ECO3 and Bacillus aryabhattai strain ECO4. At an initial concentration of 50 mg L-1, consortium ECO-M degraded 100% of CP within 6 days. Emergence and subsequent degradation of the two metabolites, 3, 5, 6-trichloro-2-pyridinol (TCP) and 2-hydroxypyridine were confirmed by GC-MS analysis. A degradation pathway of CP by isolated strains has been proposed. A general factorial experimental design was effectuated to prognosticate the optimum biodegradation by manifesting the optimal biological and physicochemical factors. Fitness of the experimental design was affirmed experimentally by employing optimized factors i.e., temperature 30 °C, CP concentration 50 mg L-1 and an inoculum size of 10% (v/v). The model appropriacy and the rationality of the optimization procedure were appraised by installing an in-situ microcosms experiment using the real contaminated soil collected from the Himalayan mountain ecosystem. The augmentation culture seems to be effectively conspicuous in stimulating maximum degradation up to 94.3% in the CP contaminated soil.In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes.Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.