Abildtrupdavies0793
Innate immune responses to Gram-negative bacteria depend on the recognition of lipopolysaccharide (LPS) by a receptor complex that includes CD14 and TLR4. In dendritic cells (DCs), CD14 enhances the activation not only of TLR4 but also that of the NFAT family of transcription factors, which suppresses cell survival and promotes the production of inflammatory mediators. NFAT activation requires Ca2+ mobilization. In DCs, Ca2+ mobilization in response to LPS depends on phospholipase C γ2 (PLCγ2), which produces inositol 1,4,5-trisphosphate (IP3). Here, we showed that the IP3 receptor 3 (IP3R3) and ITPKB, a kinase that converts IP3 to inositol 1,3,4,5-tetrakisphosphate (IP4), were both necessary for Ca2+ mobilization and NFAT activation in mouse and human DCs. A pool of IP3R3 was located on the plasma membrane of DCs, where it colocalized with CD14 and ITPKB. Upon LPS binding to CD14, ITPKB was required for Ca2+ mobilization through plasma membrane-localized IP3R3 and for NFAT nuclear translocation. Pharmacological inhibition of ITPKB in mice reduced both LPS-induced tissue swelling and the severity of inflammatory arthritis to a similar extent as that induced by the inhibition of NFAT using nanoparticles that delivered an NFAT-inhibiting peptide specifically to phagocytic cells. Our results suggest that ITPKB may represent a promising target for anti-inflammatory therapies that aim to inhibit specific DC functions.
Talimogene laherparepvec (T-VEC), an oncolytic virus, was designed to selectively replicate in and lyse tumor cells, releasing tumor-derived antigen to stimulate a tumor-specific immune response.
In this phase II study in patients with unresectable stage IIIB-IV melanoma, we evaluated non-injected lesions to establish whether baseline or change in intratumoral CD8
T-cell density (determined using immunohistochemistry) correlated with T-VEC clinical response.
Of 112 enrolled patients, 111 received ≥1 dose of T-VEC. After a median follow-up of 108.0 weeks, objective/complete response rates were 28%/14% in the overall population and 32%/18% in patients with stage IIIB-IVM1a disease. No unexpected toxicity occurred. Baseline and week 6 change from baseline CD8
T-cell density results were available for 91 and 65 patients, respectively. Neither baseline nor change in CD8
T-cell density correlated with objective response rate, changes in tumor burden, duration of response or durable response rate. However, a 2.4-fold median increase in CD8
T-cell density in non-injected lesions from baseline to week 6 was observed. In exploratory analyses, multiparameter immunofluorescence showed that after treatment there was an increase in the proportion of infiltrating CD8
T-cells expressing granzyme B and checkpoint markers (programmed death-1, programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4) in non-injected lesions, together with an increase in helper T-cells. Consistent with T-cell infiltrate, we observed an increase in the adaptive resistance marker PD-L1 in non-injected lesions.
This study indicates that T-VEC induces systemic immune activity and alters the tumor microenvironment in a way that will likely enhance the effects of other immunotherapy agents in combination therapy.
NCT02366195.
NCT02366195.Considerable attention has been recently paid to improving replicability and reproducibility in life science research. This has resulted in commendable efforts to standardize a variety of reagents, assays, cell lines and other resources. However, given that microscopy is a dominant tool for biologists, comparatively little discussion has been offered regarding how the proper reporting and documentation of microscopy relevant details should be handled. Image processing is a critical step of almost any microscopy-based experiment; however, improper, or incomplete reporting of its use in the literature is pervasive. BI-3406 The chosen details of an image processing workflow can dramatically determine the outcome of subsequent analyses, and indeed, the overall conclusions of a study. This Review aims to illustrate how proper reporting of image processing methodology improves scientific reproducibility and strengthens the biological conclusions derived from the results.Recent technological advances have made microscopy indispensable in life science research. Its ubiquitous use, in turn, underscores the importance of ensuring that microscopy-based experiments are replicable and that the resulting data comparable. While there has been a wealth of review articles, practical guides and conferences devoted to the topic of maintaining standard instrument operating conditions, the paucity of attention dedicated to properly documenting microscopy experiments is undeniable. This lack of emphasis on accurate reporting extends beyond life science researchers themselves, to the review panels and editorial boards of many journals. Such oversight at the final step of communicating a scientific discovery can unfortunately negate the many valiant efforts made to ensure experimental quality control in the name of scientific reproducibility. This Review aims to enumerate the various parameters that should be reported in an imaging experiment by illustrating how their inconsistent application can lead to irreconcilable results.We report a case of a 20-year-old man who was diagnosed with spontaneous spinal cord infarction after abusing methamphetamine for a year. He presented with sudden onset of bilateral upper and lower limb weakness. His MRI spine showed a long segment of high signal intensity seen predominantly in the anterior spinal cord from medulla to mid thoracic level as well as a pencil-like hyperintensity seen postcontrast suggestive of spinal cord ischaemia or infarct. Thus, he was empirically treated for presumed anterior spinal cord infarction. He then developed autonomic dysfunction and went into respiratory distress, which required invasive mechanical ventilation support. Subsequently, he developed cardiac arrythmia with supraventricular tachycardiac followed by asystole and succumbed to illness on day 9 despite maximal resuscitative efforts. This case report illustrates a rare spinal cord infarction caused by methamphetamine intoxication and the importance of identifying and treating it early.A 78 year-old female status post subarachnoid haemorrhage developed abdominal pain and obstructive jaundice. CT scan showed acute cholecystitis and dilation of the intrahepatic ducts. Endoscopic retrograde cholangiography revealed hepatic duct stenosis due to compression by an enlarged gallbladder. No stones were seen in the common hepatic duct and the cystic duct was patent. An endoscopic retrograde biliary drain was placed to relieve the obstructive jaundice due to acute acalculous cholecystitis. Percutaneous transhepatic drainage was performed to treat the acute acalculous cholecystitis. Hepatic duct stenosis was improved on endoscopic retrograde cholangiography performed 19 days after percutaneous transhepatic drainage. It may be reasonable to treat 'Mirizzi-like syndrome' non-operatively.We describe three cases of female subjects (aged 16, 44 and 41 years) with no respiratory symptoms, who have alpha-1 antitripsyn mutation (PiSZ, PiZZ and PiZZ) and who performed traditional pulmonary function tests and the single breath nitrogen washout test. They still did not have chronic obstructive pulmonary disease (COPD) or any identifiable change in traditional pulmonary function tests but already have change in nitrogen washout tests. Alpha-1 antitrypsin deficiency is a genetic disorder associated with early-onset COPD. There is evidence that although patients who have well-preserved FEV1 may already have signs of emphysema associated with symptoms. Therefore, the nitrogen washout test is considered to have more sensitive outcomes than other pulmonary function tests for early investigation of small airways disease and could allow the monitoring pulmonary function and evaluating of therapeutic decision.The induction of type I interferons through the transcription factor interferon regulatory factor 3 (IRF3) is considered a major outcome of stimulator of interferon genes (STING) activation that drives immune responses against DNA viruses and tumors. However, STING activation can also trigger other downstream pathways such as nuclear factor κB (NF-κB) signaling and autophagy, and the roles of interferon (IFN)-independent functions of STING in infectious diseases or cancer are not well understood. Here, we generated a STING mouse strain with a mutation (S365A) that disrupts IRF3 binding and therefore type I interferon induction but not NF-κB activation or autophagy induction. We also generated STING mice with mutations that disrupt the recruitment of TANK-binding kinase 1 (TBK1), which is important for both IRF3 and NF-κB activation but not autophagy induction (L373A or ∆CTT, which lacks the C-terminal tail). The STING-S365A mutant mice, but not L373A or ∆CTT mice, were still resistant to herpes simplex virus 1 (HSV-1) infections and mounted an antitumor response after cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) treatment despite the absence of STING-induced interferons. These results demonstrate that STING can function independently of type I interferons and autophagy, and that TBK1 recruitment to STING is essential for antiviral and antitumor immunity.Cis-acting RNA elements are crucial for the regulation of polyadenylated RNA stability. The element for nuclear expression (ENE) contains a U-rich internal loop flanked by short helices. An ENE stabilizes RNA by sequestering the poly(A) tail via formation of a triplex structure that inhibits a rapid deadenylation-dependent decay pathway. Structure-based bioinformatic studies identified numerous ENE-like elements in evolutionarily diverse genomes, including a subclass containing two ENE motifs separated by a short double-helical region (double ENEs [dENEs]). Here, the structure of a dENE derived from a rice transposable element (TWIFB1) before and after poly(A) binding (∼24 kDa and ∼33 kDa, respectively) is investigated. We combine biochemical structure probing, small angle X-ray scattering (SAXS), and cryo-electron microscopy (cryo-EM) to investigate the dENE structure and its local and global structural changes upon poly(A) binding. Our data reveal 1) the directionality of poly(A) binding to the dENE, and 2) that the dENE-poly(A) interaction involves a motif that protects the 3'-most seven adenylates of the poly(A). Furthermore, we demonstrate that the dENE does not undergo a dramatic global conformational change upon poly(A) binding. These findings are consistent with the recently solved crystal structure of a dENE+poly(A) complex [S.-F. Torabi et al., Science 371, eabe6523 (2021)]. Identification of additional modes of poly(A)-RNA interaction opens new venues for better understanding of poly(A) tail biology.The contraction of heart cells is controlled by the intermolecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs), and the nanodistance between them depends on the interaction between junctophilin-2 (JPH2) in the sarcoplasmic reticulum (SR) and caveolin-3 (CAV3) in the transversal tubule (TT). In heart failure, decreased expression of JPH2 compromises LCC-RyR communication leading to deficient blood-pumping power. In the present study, we found that JPH2 and CAV3 transcription was concurrently regulated by serum response factor (SRF) and myocardin. In cardiomyocytes from torpid ground squirrels, compared with those from euthermic counterparts, myocardin expression was up-regulated, which boosted both JPH2 and CAV3 expression. Transmission electron microscopic imaging showed that the physical coupling between TTs and SRs was tightened during hibernation and after myocardin overexpression. Confocal Ca2+ imaging under the whole-cell patch clamp condition revealed that these changes enhanced the efficiency of LCC-RyR intermolecular signaling and fully compensated the adaptive down-regulation of LCCs, maintaining the power of heart contraction while avoiding the risk of calcium overload during hibernation.