Abildgaardmercer7489
Taken together, M-CS-Ce6 could be a promising and safe broad-spectrum antibacterial agent.The barrier performances, in terms of water vapor sorption properties, gas and water barrier performances were analyzed on different starch-based nano-biocomposites. These multiphase systems were elaborated by melt blending starch and halloysite nanotubes at different contents with different plasticizers (glycerol, sorbitol and a mix of both polyols). The influence of the composition was investigated onto the structure, morphology, water sorption and barrier performances. As recently reported, halloysite nanoclay is a promising clay to enhance the properties of plasticized starch matrix. The barrier performances of nanofilled starch-based films were examined through gas and water permeabilities, diffusivity and water affinity. Glycerol-plasticized starch films give fine and more homogeneous nanofiller dispersion with good interfacial interactions, compared to sorbitol ones (alone or mixed), due to stronger and more stable hydrogen bonds. Tortuosity effects linked to the halloysite nanotubes were evidenced by gas transfer analysis, and exacerbated by the good interactions at interfaces and the resulting good filler dispersion. The influence of morphology and interfacial interactions towards water affinity was highlighted by moisture barrier properties. This was a key factor on the reduction of water diffusion and uptake with nanoclay content. A preferential water transfer was observed as a function of a plasticizer type in relation with the phenomenon of water plasticization in the nanocomposite systems.Extraintestinal pathogenic Escherichia coli O1 is a frequently identified serotype that causes serious infections and is often refractory to antimicrobial therapy. Glycoconjugate vaccine represents a promising measure to reduce ExPEC infections. Herein, we designed an O1-specific glyco-optimized chassis strain for manufacture of O-polysaccharide (OPS) antigen and OPS-based bioconjugate. Specifically, OPS and OPS-based glycoprotein were synthesized in glyco-optimized chassis strain, when compared to the unmeasurable level of the parent strain. The optimal expression of oligosaccharyltransferase and carrier protein further improved the titer. MS analysis elucidated the correct structure of resulting bioconjugate at routine and unreported glycosylation sequons of carrier protein, with a higher glycosylation efficiency. Finally, purified bioconjugate stimulated mouse to generate specific IgG antibodies and protected them against virulent ExPEC O1 challenge. The plug-and-play glyco-optimized platform is suitable for bioconjugate synthesis, thus providing a potential platform for future medical applications.Raman spectroscopy is effective for studying the ultrastructure, lignin content, and cellulose crystallinity of lignocellulosic materials. However, the quantitative analysis of holocellulose in lignocellulosic materials by this technique is challenging. In this study, based on Fourier-transform Raman (FT-Raman) spectroscopy, a novel strategy for building poplar holocellulose content quantitative model was proposed. Different algorithms were applied, including Principal component regression (PCR), partial least square regression (PLSR), ridge regression (RR), lasso regression (LR), and elastic net regression (ENR). Combined with different algorithms, twelve candidates of internal standard were selected. Sixty models combined by five regression algorithms and twelve internal standards were performed by five-fold cross validation. Consequently, the models constructed through RR, LR, and ENR combined with the internal standard of peak intensity of 2945 cm-1 were credible (Rp > 0.9, RMSEp less then 1.0, and MAEp less then 0.9). Credible models were obtained, indicating the high potential of FT-Raman spectroscopy for predicting the holocellulose content of lignocellulosic materials.Highly anisometric α-chitin nanoparticles isolated by TEMPO-oxidation were investigated as filler for electrorheological fluids. The dimensions of rod-like particles were determined by AFM and cryo-TEM methods. The rheological behavior of α-chitin nanoparticles in polydimethylsiloxane changes from viscous to elastic under electric field. The yield stress reaches about 220 Pa at 7 kV/mm for 1.0 wt% fluid. Despite the nanosize of particles, the suspensions sedimentation ratio was found to be low (~23%). The electrorheological behavior of the fluids was discussed in terms of the Mason numbers. The stability of fluids response under switching electric field was shown. The activation energy of polarization processes in suspensions was calculated as 58 ± 2 and 64 ± 1 kJ/mol for 0.5 and 1.0 wt% filler content from the impedance spectra. The high aspect ratio (~70) and dielectric permittivity result in high electrorheological activity of α-chitin suspensions at extremely low concentrations (≤1.0 wt%).Neural stem cells (NSCs) transplantation therapy is a promising method for neural tissue regeneration. How to enhance the neuronal differentiation of NSCs has been the most challenging aspect of NSCs application. Herein, the microRNA-222 loaded chitosan nanoparticles (miR-222/CS NPs) were incorporated with silk fibroin (SF) nanofibrous scaffolds to enhance neuronal differentiation of NSCs. The encapsulation efficiency of miR-222 in the miR-222/CS NPs was (96.4 ± 0.3) %. The results of the electrophoretic assay and cellular uptake assay confirmed that miR-222 was stable in the miR-222/CS NPs and can be effectively delivered into NSCs. The water contact angle decreased from (89 ± 3.05)° for the SF scaffolds to (14 ± 1.00)° for the composite scaffolds. The Western blot and RT-PCR results confirmed that the composite scaffolds could enhance neuronal differentiation of NSCs. In conclusion, the SF nanofibrous scaffolds in combination with miR-222/CS NPs are a promising approach for neural tissue regeneration.Developing three-dimensional porous hydrophobic and oleophilic materials (3D-PHOMs) for efficient and selective oil-water separation is important to clean up oil spills and organic pollutants. However, 3D-PHOMs are still confined to lab-scale research due to several crucial drawbacks. Herein, a hydrophobic oil-water separation composite, containing cellulose nanofiber (delignificated porous wood, PW) substrate, magnetic nickel (Ni) layer and hydrophobic polydimethylsiloxane (PDMS) coating, is prepared using electroless deposition (ELD) and surface modification techniques. Owing to the porosity, hydrophobicity (>130° of water contact angle), lipophilicity, convenient magnetic collection and high cycle compressibility, the as-fabricated PDMS-Ni-PW exhibits excellent oil adsorption capacity (>60% of the volumetric absorption capacity) and outstanding cyclic stability (>80% of the adsorption capacity after 200 cycles). Thanks to the low surface energy and rough surface structure, the adsorbent demonstrates superior oil-retention ability (>80% at 200 rpm). Also, the oil-collecting apparatus is successfully designed to continuously separate various oils, e.g., n-hexane and dichloromethane, from water due to the unidirectional liquid transport of the adsorbent. These excellent properties make PDMS-modified cellulose nanofiber a promising candidate for oil-water separation.Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.This work aims to fabricate multifunctional hemostatic sponges (C-ODs). Porous C-ODs were first constructed by using capric acid-modified chitosan (CSCA) and oxidized dextrans (ODs) with different oxidation degrees. Batches of experiments showed that (i) CSCA (33.39% of grafting degree), ODs, and C-ODs (100-200 μm in pore size) were synthesized, evidenced by FT-IR, 1H NMR, elemental analysis, hydroxylamine hydrochloride titration, and SEM results; (ii) among C-ODs, C-OD2 had appropriate porosity (85.0%), swelling (20 times its dry weight), absorption, water retention, water vapor transmission, and mechanical properties; (iii) C-OD2 possessed low toxicity (relative cell viability > 86%), low hemolysis rate (0.65%), suitable tissue adhesion (4.74 kPa), and strong antibacterial efficacy (five strains); and (iv) C-OD2's dynamic blood clotting was within 30 s. In three animal injury models, C-OD2's hemostasis time and blood loss were fairly lower than commercial gelatin sponge. Totally, C-OD2 might serve as an ideal hemostatic dressing.Chitosan (200 kDa) dissolution in an aqueous solution of L-aspartic acid, physicochemical properties and features of the resulting chitosan salt were studied by conductometry, potentiometry, viscometry, turbidimetry, IR and NMR spectroscopy, and X-ray diffractometry. Chitosan aspartate is a water-soluble hydrated polymorph exhibiting properties of a cationic polyelectrolyte with an effective macromolecular coil radius 60-75 nm. The specific conductivity, dielectric constant, viscosity and pH of the chitosan - L-aspartic acid - water system change over time after preparation due to counterion-polycation association to form ion pairs, multiplet structures, and their subsequent aggregation. As a result, nanoparticles (40-90 nm) are formed after ~24 h, microparticles (0.6-1.4 μm) are after ~48 h, and precipitation occurs after 72-96 h. The precipitated phase is a water-insoluble chitosan salt with a developed system of H-bonds and high crystallinity degree. Chitosan nanoparticles have high biocompatibility and the ability to accelerate the proliferative activity of epithelial cells. HYPOTHESIS Ion pairs and multiplets are formed in the chitosan - L-aspartic acid - water system due to counterion association, which leads to phase segregation of the polymer substance at the level of nanoparticles and microparticles.The enzymatic hydrolysis of barley beta-glucan, konjac glucomannan and carboxymethyl cellulose by a β-1,4-D-endoglucanase MeCel45A from blue mussel, Mytilus edulis, which belongs to subfamily B of glycoside hydrolase family 45 (GH45), was compared with GH45 members of subfamilies A (Humicola insolens HiCel45A), B (Trichoderma reesei TrCel45A) and C (Phanerochaete chrysosporium PcCel45A). Furthermore, the crystal structure of MeCel45A is reported. Initial rates and hydrolysis yields were determined by reducing sugar assays and product formation was characterized using NMR spectroscopy. The subfamily B and C enzymes exhibited mannanase activity, whereas the subfamily A member was uniquely able to produce monomeric glucose. All enzymes were confirmed to be inverting glycoside hydrolases. MeCel45A appears to be cold adapted by evolution, as it maintained 70% activity on cellohexaose at 4 °C relative to 30 °C, compared to 35% for TrCel45A. Both enzymes produced cellobiose and cellotetraose from cellohexaose, but TrCel45A additionally produced cellotriose.