Aarupnash7738
Overall survival was 11.4 months (±8.6). Median GFAP value was 70% (range, 5-100%). The ROC curve showed the clinically relevant cut-off for GFAP at 75% (area under the curve 0.691). Accordingly, GB patients with GFAP ≥75% presented poorer survival on Kaplan-Meier survival estimation (p=0.021). Multivariate analysis adjusted for age, extent of resection, preoperative Karnofsky performance status scale, IDH1 mutation and MGMT methylation status confirmed the independent predictive value of GFAP ≥75% for overall survival (p=0.032). Finally, patients with GFAP ≥75% showed significantly poorer long-term survival than those with GFAP less then 75% 5.8% vs 15.2% (p=0.0183) and 0.8% vs 8% (p=0.0076) for 2- and 3-year survival respectively. CONCLUSION Quantitative immunohistochemical assessment of GFAP staining could provide a novel biomarker for overall and especially long-term survival of patients with GB. Prospective multi-center validation of the prognostic value of GFAP for GB survival is needed. A couple with five adverse pregnancy history required prenatal diagnosis. The fetus of this study was their fifth pregnancy. The fetus was found NT thickening at 12 weeks and 4 days gestation and the average long bone of limbs retardation 4SD at 27 weeks and 4 days gestation. Anlotinib Karyotype was normal. The next-generation sequencing (NGS) and Sanger sequencing were conducted of this fetus. The compound heterozygous mutations c.3722_3749dup[p.V1252fs*23] and c.3355 + 5 G > A at CUL7 gene were detected. The mutation c.3355 + 5 G > A was a novel mutation within intron 17 of the CUL7 gene. Minigene array was used to verify whether the novel mutation c.3355 + 5 G > A really affected the splicing of CUL7gene. The results showed that the mutation could result in the appearance of premature termination codon. The fetus could be diagnosed as 3 M syndrome. We suggested that close attention needed to be paid to fetuses with intrauterine growth restriction only by ultrasonic and avoid misdiagnosis and missed diagnosis of 3 M syndrome. In addition, our study enriched gene mutations of 3 M syndrome. V.The invasive slug Arion vulgaris (Gastropoda Arionidae) is an agricultural pest and serious nuisance in gardens of Central and Northern Europe. To investigate if the success of A.vulgaris in Norway can be attributed to a release from parasites, we compared the prevalence and parasite load of nematodes and trematodes in A. vulgaris to that of three native gastropod species, A. circumscriptus, A. fasciatus and Arianta arbustorum, in SE Norway. We found A. vulgaris to have the highest prevalence of both parasite groups (49% nematodes, 76% trematodes), which does not support the parasite release hypothesis, but rather points to A. vulgaris as a potentially important intermediate host of these parasites. For trematodes the number of individuals (parasite load) did not differ among host species; for nematodes it was higher in A. vulgaris than A. fasciatus. To further compare the parasite susceptibility of the surveyed gastropods, we exposed A. vulgaris, A. fasciatus, and A. arbustorum to a slug parasitic nematode, Phasmarhabditis hermaphrodita, in the laboratory. This nematode is commercially available and widely used to control A. vulgaris. The non-target species A. fasciatus was most affected, with 100% infection, 60% mortality and significant feeding inhibition. A. vulgaris was also 100% infected, but suffered only 20% mortality and little feeding inhibition. The load of P. hermaphrodita in infected specimens was not significantly different for the two Arion species (median 22.5 and 45, respectively). Only 35% of A. arbustorum snails were infected, none died, and parasite load was very low (median 2). However, they showed a near complete feeding inhibition at highest nematode dose, and avoided nematode-infested soil. Our results indicate that A. vulgaris may be less susceptible to P. hermaphrodita than the native A. fasciatus, and that non-target effects of applying this nematode in fields and gardens should be further investigated. BACKGROUND The Mycoplasma pneumoniae(MP) and influenza virus are two common pathogens causing pediatric acute respiratory tract infection. Though emerging reports demonstrated imbalanced respiratory microbiota in respiratory infection, the respiratory microbiota differences between MP and influenza virus remained to be explored. METHODS We collected paired nasopharyngeal(NP) and oropharyngeal(OP) microbial samples from 165 children, including 40 patients with MP pneumonia, 66 patients with influenza virus infection and 59 age-matched healthy children. RESULTS The NP and OP microbial diversity decreased in MP infection and increased in influenza infection as compared to healthy children. The Staphylococcus dominated Mycoplasma pneumoniae pneumonia(MPP) patients' NP microbiota while five representative patterns remained in influenza patients. In OP microbiota, Streptococcus significantly enriched in MPP group and decreased in Influenza group. Decision tree analysis indicated that Ralstonia and Acidobacteria could discriminate microbial samples in healthy (59/67), MP (35/38) and Influenza groups (55/60) with high accuracy. CONCLUSIONS This study revealed that dominant bacterial structure in the airway was niche- and disease-specific. It could facilitate the stratification of respiratory microbial samples with different infectious agents. Previous research has demonstrated that writing can modulate the orthographic processing of reading in Chinese. We examined whether such a modulatory effect from Chinese writing to reading can occur even when visual feedback is not provided during writing. Using the repetition prime paradigm in conjunction with imagined and actual writing prime tasks, we found that actual but not imagined writing elicited an N200 enhancement effect, which reflects deep orthographic processing in reading Chinese characters at a topographic and ERP level. This effect can be explained by the interaction between writing production processing and the environment during writing execution, which may modulate the subsequent deep orthographic process of reading through a kinesthetic gesture orthographic code system in reading or a tight connection between visual orthography and writing motion. In addition, writing influenced the orthographic processing of Chinese reading in a different way than reading. Our findings suggest that the actual writing process without visual feedback can modulate the orthographic processing in reading Chinese characters, and highlight the crucial role of writing motion in developing Chinese reading ability.