Aguirreholland2264

Z Iurium Wiki

Verze z 15. 1. 2025, 01:06, kterou vytvořil Aguirreholland2264 (diskuse | příspěvky) (Založena nová stránka s textem „The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse m…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse molecular mechanisms and cellular systems that are interrelated and act in concert to drive the aging process. Here, through the lens of telomere biology, we examine how telomere dysfunction may amplify or drive molecular biological processes underlying each hallmark of aging and contribute to development of age-related diseases such as neurodegeneration and cancer. The intimate link of telomeres to aging hallmarks informs preventive and therapeutic interventions designed to attenuate aging itself and reduce the incidence of age-associated diseases.Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.Food is simultaneously a source of essential nutrients and a potential source of lethal toxins and pathogens. Consequently, multiple sensory mechanisms evolved to monitor the quality of food based on the presence and relative abundance of beneficial and harmful food substances. These include the olfactory, gustatory, and gut chemosensory systems. Here we argue that, in addition to these systems, allergic immunity plays a role in food quality control by mounting allergic defenses against food antigens associated with noxious substances. Exaggeration of these defenses can result in pathological food allergy.The COVID-19 pandemic strained health-care systems throughout the world. For some, available medical resources could not meet the increased demand and rationing was ultimately required. Hospitals and governments often sought to establish triage committees to assist with allocation decisions. However, for institutions operating under crisis standards of care (during times when standards of care must be substantially lowered in the setting of crisis), relying on these committees for rationing decisions was impractical-circumstances were changing too rapidly, occurring in too many diverse locations within hospitals, and the available information for decision making was notably scarce. Furthermore, a utilitarian approach to decision making based on an analysis of outcomes is problematic due to uncertainty regarding outcomes of different therapeutic options. We propose that triage committees could be involved in providing policies and guidance for clinicians to help ensure equity in the application of rationing under crisis standards of care. An approach guided by egalitarian principles, integrated with utilitarian principles, can support physicians at the bedside when they must ration scarce resources.Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. AHPN agonist Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction.

Autoři článku: Aguirreholland2264 (Ford Kern)