Austinspears1557
The lakes on the Yangtze Plain, a critical source of freshwater and fisheries for hundreds of millions of people in China, have lost a considerable portion of their surface area due to reclamation since the 1950s. Landsat satellites can provide long-term collections of high-resolution images and thus offer great potential for hindcasting the lake reclamations of aquaculture zones and their long-term impacts on the lacustrine water color. Using Landsat observations from 1984 to 2018 and a Forel-Ule index (FUI) model, we studied the water color dynamics of 61 lakes on the Yangtze Plain. Three distinct change patterns were found among the 61 examined lakes, and 25 of the 61 lakes showed statistically significant changes in the annual hue angle values (P less then 0.05). We further collected environmental parameter datasets (runoff, normalized difference vegetation index (NDVI), and wind speed) and a lacustrine reclamation dataset, and measured the concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) from two field trips. Deruxtecan clinical trial We investigated their correlations with water color change from different facets. The results showed that the long-term water color in 33 of the 61 lakes exhibited significant correlations with environmental factors. The reclaimed aquaculture zones in this region have caused differences in the water color between the reclaimed area and that in adjacent natural waters. The Chl-a and DOC levels derived from field surveys further confirmed that reclaimed aquaculture zones increased light-absorbing materials in the water and may deteriorate water quality. This study is an important step forward in understanding the water quality changes in lake ecosystems affected by human impacts and natural variability.Nonylphenol (NP) is considered as one of the persistent organic pollutants (POPs) in the environment. Pacific white shrimp Litopenaeus vannamei is the predominant species in China, which is frequently affected by environmental pollutants. However, potential toxicity mechanism of NP in shrimp has not been comprehensively studied. To explore the physiological changes and molecular mechanism involved in NP exposure of shrimp, we analyzed histological alterations, apoptosis and transcriptional responses of L.vannamei subjected to NP. Results indicated that significant changes in the histoarchitecture of the gills were observed after NP exposure for 3, 12 and 48 h. Apoptosis was also detected in a time-dependent manner. Numerous differentially expressed genes (DEGs) were obtained at 3 h, 12 h and 48 h after exposure. On the basis of the expression patterns over the time course, these DEGs were classified into 12 clusters. GO and KEGG enrichment analysis of these DEGs was carried out and a dynamic and global view was obtained in shrimp after NP exposure on a transcriptome level. In addition, 15 DEGs involved in immune response, apoptosis, DNA repair, osmoregulation etc. were selected for qRT-PCR validation. The expression patterns of these DEGs kept a well consistent with the high-throughput data at different timepoints, which confirmed the accuracy and reliability of the transcriptome data. All the results demonstrated that NP exposure might lead to impairments of biological functions in gills, alter immune and antioxidant response, compromise DNA repair and anti-apoptosis abilities of shrimp, cause severe histopathological changes and eventually trigger apoptosis. The present study enriched the information on the toxicity mechanism of crustaceans in response to NP exposure.The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease Mpro, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For Mpro were, in kcal/mol -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for Mpro. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.Soil dwelling organisms, plants and many primary consumers in food webs face the challenge of exposure to contaminants of emerging concern (CECs) present in terrestrial systems, including thousands of substances derived from pharmaceutical and personal care products (PPCPs). The recent increase in the consumption of modern human or veterinary drugs has resulted in a surge of anthropogenic pharmaceuticals, frequently introduced into terrestrial environments via untreated/treated wastewater. Pharmaceuticals display diverse degradation and accumulation behaviours in receiving bodies, however their impact on soils has, at large, been overlooked. Details about adsorption, absorption, degradation and uptake behaviours, as well as the fate and actual environmental impact of pharmaceuticals are a prerequisite before the traditional transportation prediction models originally designed for the aquatic environment can be extrapolated to terrestrial systems. Without this knowledge, our ability for informed risk assessments and the resultant implementation of contamination management strategies of soils will remain limited.