Sykesgormsen4035
OBJECTIVES To evaluate the population pharmacokinetics of different benznidazole treatment regimens and the drug's biodistribution in mice. METHODS Two hundred mice were divided into five groups according to benznidazole dosing regimens (1) 100 mg/kg/day for 20 days; (2) 100 mg/kg/day for 40 days; (3) 200 mg/kg/day for 20 days; (4) 40 mg/kg/day for 20 days; or (5) 40 mg/kg/day for 40 days. The mice were euthanized and blood, heart, liver, colon and brain were collected. Samples were prepared by liquid-liquid extraction and analysed by HPLC-diode-array detection. The pharmacokinetic analysis of benznidazole was evaluated via non-linear mixed-effects modelling using the NONMEN program. RESULTS Our results demonstrate that mouse weight allometrically influences benznidazole clearance; the AUC curve and the highest plasma concentration are dose proportional; benznidazole does not influence its own metabolism; its tissue distribution is limited; and the standard treatment regimen for Chagas' disease in mice (100 mg/kg/day for 20 days) is inadequate from a pharmacokinetic standpoint, as are the other regimens tested in this study (100 mg/kg/day for 40 days, 200 mg/kg/day for 20 days and 40 mg/kg/day for 20 or 40 days). CONCLUSIONS Benznidazole reformulations that allow better tissue penetration and plasma and tissue exposure should be evaluated to enable higher cure rates in both animals and patients. The population pharmacokinetic model developed here can allow optimization of the dosing regimen of benznidazole to treat experimental Chagas' disease. Determining appropriate treatment regimens in animals allows translation of these to clinical studies. © The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email journals.permissions@oup.com.Artificial sweeteners have been shown to induce glucose intolerance by altering the gut microbiota; however, little is known about the effect of stevia. Here, we investigate whether stevia supplementation induces glucose intolerance by altering the gut microbiota in mice, hypothesizing that stevia would correct high fat diet-induced glucose intolerance and alter the gut microbiota. Mice were split into four treatment groups low fat, high fat, high fat + saccharin, or high fat + stevia. learn more After 10 weeks of treatment, mice consuming a high fat diet (60% kcal from fat) developed glucose intolerance and gained more weight than mice consuming a low fat diet. Stevia supplementation did not impact body weight or glucose intolerance. Differences in species richness and relative abundances of several phyla were observed in low fat groups compared to high fat, stevia, and saccharin. We identified two operational taxonomic groups that contributed to differences in beta-diversity between the stevia and saccharin groups Lactococcus and Akkermansia in females and Lactococcus in males. Our results demonstrate stevia does not rescue high fat diet-induced changes in glucose tolerance or the microbiota, and that stevia results in similar alterations to the gut microbiota as saccharin when administered in concordance with a high fat diet. © FEMS 2020.Importance The dynamics of coronavirus disease 2019 (COVID-19) transmissibility are yet to be fully understood. Better understanding of the transmission dynamics is important for the development and evaluation of effective control policies. Objective To delineate the transmission dynamics of COVID-19 and evaluate the transmission risk at different exposure window periods before and after symptom onset. Design, Setting, and Participants This prospective case-ascertained study in Taiwan included laboratory-confirmed cases of COVID-19 and their contacts. The study period was from January 15 to March 18, 2020. All close contacts were quarantined at home for 14 days after their last exposure to the index case. During the quarantine period, any relevant symptoms (fever, cough, or other respiratory symptoms) of contacts triggered a COVID-19 test. The final follow-up date was April 2, 2020. Main Outcomes and Measures Secondary clinical attack rate (considering symptomatic cases only) for different exposure time windoolder (0.9% [95% CI, 0.3%-2.6%]). Conclusions and Relevance In this study, high transmissibility of COVID-19 before and immediately after symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to contain the epidemic, and more generalized measures may be required, such as social distancing.The Aurora B chromosomal passenger complex (CPC) is a conserved regulator of mitosis. Its functions require localization first to the chromosome arms and then centromeres in mitosis and subsequently the central spindle in anaphase. Here, we analyze the requirements for core CPC subunits, survivin and INCENP, and the mitotic kinesin-like protein 2 (MKLP2) in targeting to these distinct localizations. Centromere recruitment of the CPC requires interaction of survivin with histone H3 phosphorylated at threonine 3, and we provide a complete structure of this assembly. Furthermore, we show that the INCENP RRKKRR-motif is required for both centromeric localization of the CPC in metaphase and MKLP2-dependent transport in anaphase. MKLP2 and DNA bind competitively to this motif, and INCENP T59 phosphorylation acts as a switch preventing MKLP2 binding in metaphase. In anaphase, CPC binding promotes the microtubule-dependent ATPase activity of MKLP2. These results explain how centromere targeting of the CPC in mitosis is coupled to its movement to the central spindle in anaphase. © 2020 Serena et al.Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1-positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (SOs). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from ∼4.5-5 to ∼6.1 after recruitment to VIs and before incorporation of virions.