Martinussenahmad5849

Z Iurium Wiki

Verze z 4. 1. 2025, 23:33, kterou vytvořil Martinussenahmad5849 (diskuse | příspěvky) (Založena nová stránka s textem „Convolutional neural networks (CNNs) have recently been applied to electroencephalogram (EEG)-based brain-computer interfaces (BCIs). EEG is a noninvasive…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Convolutional neural networks (CNNs) have recently been applied to electroencephalogram (EEG)-based brain-computer interfaces (BCIs). EEG is a noninvasive neuroimaging technique, which can be used to decode user intentions. Because the feature space of EEG data is highly dimensional and signal patterns are specific to the subject, appropriate methods for feature representation are required to enhance the decoding accuracy of the CNN model. Furthermore, neural changes exhibit high variability between sessions, subjects within a single session, and trials within a single subject, resulting in major issues during the modeling stage. In addition, there are many subject-dependent factors, such as frequency ranges, time intervals, and spatial locations at which the signal occurs, which prevent the derivation of a robust model that can achieve the parameterization of these factors for a wide range of subjects. However, previous studies did not attempt to preserve the multivariate structure and dependencies of the feature space. In this study, we propose a method to generate a spatiospectral feature representation that can preserve the multivariate information of EEG data. Specifically, 3-D feature maps were constructed by combining subject-optimized and subject-independent spectral filters and by stacking the filtered data into tensors. In addition, a layer-wise decomposition model was implemented using our 3-D-CNN framework to secure reliable classification results on a single-trial basis. The average accuracies of the proposed model were 87.15% (±7.31), 75.85% (±12.80), and 70.37% (±17.09) for the BCI competition data sets IV_2a, IV_2b, and OpenBMI data, respectively. These results are better than those obtained by state-of-the-art techniques, and the decomposition model obtained the relevance scores for neurophysiologically plausible electrode channels and frequency domains, confirming the validity of the proposed approach.Attribute reduction, also called feature selection, is one of the most important issues of rough set theory, which is regarded as a vital preprocessing step in pattern recognition, machine learning, and data mining. Nowadays, high-dimensional mixed and incomplete data sets are very common in real-world applications. Certainly, the selection of a promising feature subset from such data sets is a very interesting, but challenging problem. Almost all of the existing methods generated a cover on the space of objects to determine important features. However, some tolerance classes in the cover are useless for the computational process. Thus, this article introduces a new concept of stripped neighborhood covers to reduce unnecessary tolerance classes from the original cover. Based on the proposed stripped neighborhood cover, we define a new reduct in mixed and incomplete decision tables, and then design an efficient heuristic algorithm to find this reduct. For each loop in the main loop of the proposed algorithm, we use an error measure to select an optimal feature and put it into the selected feature subset. Besides, to deal more efficiently with high-dimensional data sets, we also determine redundant features after each loop and remove them from the candidate feature subset. For the purpose of verifying the performance of the proposed algorithm, we carry out experiments on data sets downloaded from public data sources to compare with existing state-of-the-art algorithms. Experimental results showed that our algorithm outperforms compared algorithms, especially in classification accuracy.Real photograph denoising is extremely challenging in low-level computer vision since the noise is sophisticated and cannot be fully modeled by explicit distributions. Omipalisib order Although deep-learning techniques have been actively explored for this issue and achieved convincing results, most of the networks may cause vanishing or exploding gradients, and usually entail more time and memory to obtain a remarkable performance. This article overcomes these challenges and presents a novel network, namely, PID controller guide attention neural network (PAN-Net), taking advantage of both the proportional-integral-derivative (PID) controller and attention neural network for real photograph denoising. First, a PID-attention network (PID-AN) is built to learn and exploit discriminative image features. Meanwhile, we devise a dynamic learning scheme by linking the neural network and control action, which significantly improves the robustness and adaptability of PID-AN. Second, we explore both the residual structure and share-source skip connections to stack the PID-ANs. Such a framework provides a flexible way to feature residual learning, enabling us to facilitate the network training and boost the denoising performance. Extensive experiments show that our PAN-Net achieves superior denoising results against the state-of-the-art in terms of image quality and efficiency.This article is concerned with the issue of dissipativity-based finite-time multiple delay-dependent filtering for uncertain semi-Markovian jump random nonlinear systems with state constraints. There are multiple time-varying delays, nonlinear functions, and intermittent faults (IFs) in the systems. This is one of the few attempts for the issue studied in this article. First, a filter is designed for the uncertain semi-Markovian jump random nonlinear systems. An augmented system with regard to the resulting filtering error is acquired. Then, sufficient conditions of the augmented system are generated by the stochastic Lyapunov function. Finite-time boundedness (FTB) and input-output finite-time mean square stabilization (IO-FTMSS) are both realized. The effectiveness and feasibility of the method are rendered via three examples.This article is concerned with bipartite tracking for a class of nonlinear multiagent systems under a signed directed graph, where the followers are with unknown virtual control gains. In the predictor-based neural dynamic surface control (NDSC) framework, a bipartite tracking control strategy is proposed by the introduction of predictors and the minimal number of learning parameters (MNLPs) technology along with the graph theory. Different from the traditional NDSC, the predictor-based NDSC utilizes prediction errors to update the neural network for improving system transient performance. The MNLPs technology is employed to avoid the problem of ``explosion of learning parameters. It is proved that all closed-loop signals steered by the proposed control strategy are bounded, and the system achieves bipartite consensus. Simulation results verify the efficiency and effectiveness of the strategy.

Autoři článku: Martinussenahmad5849 (Hinrichsen Lindberg)