Crawfordbredahl0254

Z Iurium Wiki

Verze z 4. 1. 2025, 23:28, kterou vytvořil Crawfordbredahl0254 (diskuse | příspěvky) (Založena nová stránka s textem „The Ebola virus matrix protein VP40 forms distinct structures linked to distinct functions in the virus life cycle. Dimeric VP40 is a structural protein as…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The Ebola virus matrix protein VP40 forms distinct structures linked to distinct functions in the virus life cycle. Dimeric VP40 is a structural protein associated with virus assembly, while octameric, ring-shaped VP40 is associated with transcriptional control. In this study, we show that suitable nucleic acid is sufficient to trigger a dynamic transformation of VP40 dimer into the octameric ring. Deep sequencing reveals a binding preference of the VP40 ring for the 3' untranslated region of cellular mRNA and a guanine- and adenine-rich binding motif. NPD4928 mouse Complementary analyses of the nucleic-acid-induced VP40 ring by native mass spectrometry, electron microscopy, and X-ray crystal structures at 1.8 and 1.4 Å resolution reveal the stoichiometry of RNA binding, as well as an interface involving a key guanine nucleotide. The host factor-induced structural transformation of protein structure in response to specific RNA triggers in the Ebola virus life cycle presents unique opportunities for therapeutic inhibition.How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.The deleterious effects of psychological stress on mainstream T lymphocytes are well documented. However, how stress impacts innate-like T cells is unclear. We report that long-term stress surprisingly abrogates both T helper 1 (TH1)- and TH2-type responses orchestrated by invariant natural killer T (iNKT) cells. This is not due to iNKT cell death because these cells are unusually refractory to stress-inflicted apoptosis. Activated iNKT cells in stressed mice exhibit a "split" inflammatory signature and trigger sudden serum interleukin-10 (IL-10), IL-23, and IL-27 spikes. iNKT cell dysregulation is mediated by cell-autonomous glucocorticoid receptor signaling and corrected upon habituation to predictable stressors. Importantly, under stress, iNKT cells fail to potentiate cytotoxicity against lymphoma or to reduce the burden of metastatic melanoma. Finally, stress physically spares mouse mucosa-associated invariant T (MAIT) cells but hinders their TH1-/TH2-type responses. The above findings are corroborated in human peripheral blood and hepatic iNKT/MAIT cell cultures. Our work uncovers a mechanism of stress-induced immunosuppression.Cellular inflammasome activation causes caspase-1 cleavage of the pore-forming protein gasdermin D (GSDMD) with subsequent pyroptotic cell death and cytokine release. Here, we clarify the ambiguous role of the related family member gasdermin E (GSDME) in this process. Inflammasome stimulation in GSDMD-deficient cells led to apoptotic caspase cleavage of GSDME. Endogenous GSDME activation permitted sublytic, continuous interleukin-1β (IL-1β) release and membrane leakage, even in GSDMD-sufficient cells, whereas ectopic expression led to pyroptosis with GSDME oligomerization and complete liberation of IL-1β akin to GSDMD pyroptosis. We find that NLRP3 and NLRP1 inflammasomes ultimately rely concurrently on both gasdermins for IL-1β processing and release separately from their ability to induce cell lysis. Our study thus identifies GSDME as a conduit for IL-1β release independent of its ability to cause cell death.During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We capture the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discover that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide.

Autoři článku: Crawfordbredahl0254 (Kok Persson)