Terrellgroth1456
Nuclear grading systems for epithelioid malignant pleural mesothelioma (MPM) have been proposed but it remains uncertain if they could be applied in a biopsy-heavy setting. Using the proposed system, we conducted an independent, external validation study using 563 consecutive cases of epithelioid MPM diagnosed at our institution between 2003 and 2017, of which 87% of patients underwent biopsies only. The median number of sites sampled was 1, with a median maximum tissue dimension of 17 mm (biopsy) and 150 mm (resection). The median overall survival (OS) was 14.7 months. The frequencies of grade I, II, and III tumors were 31% (132/563), 52% (292/563), and 17% (94/563). Grade I tumors were associated with the most favorable median OS (24.7 mo) followed by grades II (12.7 mo) and III (7.2 mo). The 2-tier nuclear grade separated tumors into low grade (19.3 mo) and high grade (8.9 mo). In multivariate analysis, 3-tier nuclear grade, 2-tier nuclear grade, and mitosis-necrosis score predicted OS independent of age, procedural type, solid-predominant growth pattern, necrosis, and atypical mitosis (all P less then 0.001 except 2-tier nuclear grade, P=0.001). In the scenario of a single- site biopsy with tissue dimension ≤10 mm, none but age (P=0.002) were independently predictive. Our data also suggested sampling 3 sites or a maximum tissue dimension of at least 20 mm from a single site is optimal for nuclear grade assessment. In conclusion our study confirmed the utility of nuclear grade in epithelioid MPM using a biopsy-heavy cohort provided the tissue sample met minimum dimensional criteria.BACKGROUNDThe relative stabilities of the intact and defective HIV genomes over time during effective antiretroviral therapy (ART) have not been fully characterized.METHODSWe used the intact proviral DNA assay (IPDA) to estimate the rate of change of intact and defective proviruses in HIV-infected adults on ART. We used linear spline models with a knot at seven years and a random intercept and slope up to the knot. We estimated the influence of covariates on rates of change.RESULTSWe studied 81 individuals for a median of 7.3 (IQR 5.9-9.6) years. Intact genomes declined more rapidly from initial suppression through seven years (15.7% per year decline; 95% CI -22.8%, -8.0%) and more slowly after seven years (3.6% per year; 95% CI -8.1%, +1.1%). The estimated half-life of the reservoir was 4.0 years (95% CI 2.7-8.3) until year seven and 18.7 years (95% CI 8.2-infinite) thereafter. There was substantial variability between individuals in the rate of decline until year seven. Intact provirus declined more rapidly than defective provirus (P less then 0.001) and showed a faster decline in individuals with higher CD4+ T cell nadirs.CONCLUSIONThe biology of the replication-competent (intact) reservoir differs from that of the replication-incompetent (non-intact) pool of proviruses. The IPDA will likely be informative when investigating the impact of interventions targeting the reservoir.FUNDINGDelaney AIDS Research Enterprise, UCSF/Gladstone Institute of Virology & Immunology CFAR, CFAR Network of Integrated Systems, amfAR Institute for HIV Cure Research, I4C and Beat-HIV Collaboratories, Howard Hughes Medical Institute, Gilead Sciences, Bill and Melinda Gates Foundation.BACKGROUND Interventions that interrupt Plasmodium vivax transmission or eliminate dormant P. vivax liver-stage parasites will be essential for malaria elimination. Development of these interventions has been hindered by the lack of P. vivax in vitro culture and could be accelerated by a safe and reproducible clinical model in malaria-naïve individuals. METHOD Healthy, malaria-naïve adults were enrolled in two studies to assess the safety and infectivity and transmissibility of a new P. vivax isolate. Participants (Study 1; n=2, Study 2; n=24) were inoculated with P. vivax-infected red blood cells to initiate infection, and were treated with artemether-lumefantrine (Study 1) or chloroquine (Study 2). Primary endpoints were safety and infectivity of the new isolate. In Study 2, transmission to mosquitoes was also evaluated using mosquito feeding assays, and sporozoite viability was assessed using in vitro cultured hepatocytes. RESULTS Parasitaemia and gametocytemia developed in all participants and was cleared by antimalarial treatment. Adverse events were mostly mild or moderate and none were serious. Participants were infectious to Anopheles mosquitoes at peak gametocytemia 69% (11/16). Mosquito infection rates reached 97% following membrane feeding with gametocyte-enriched blood, and sporozoites developed into liver-stage schizonts in culture. CONCLUSION We have demonstrated the safe, reproducible, and efficient transmission of P. vivax gametocytes from humans to mosquitoes, and have established an experimental model that will accelerate the development of interventions targeting multiple stages of the P. vivax life cycle. TRIAL REGISTRATION ACTRN12614000930684 and ACTRN12616000174482. FUNDING (Australian) NHMRC Program Grant 1132975 (Study 1). Bill & Melinda Gates Foundation (OPP1111147) (Study 2).Altered BM hematopoiesis and immune suppression are hallmarks of myelodysplastic syndrome (MDS). While the BM microenvironment influences malignant hematopoiesis, the mechanism leading to MDS-associated immune suppression is unknown. MEK activation We tested whether mesenchymal stromal cells (MSCs) contribute to this process. Here, we developed a model to study cultured MSCs from patients with MDS (MDS-MSCs) compared with those from aged-matched normal controls for regulation of immune function. MDS-MSCs and healthy donor MSCs (HD-MSCs) exhibited a similar in vitro phenotype, and neither had a direct effect on NK cell function. However, when MDS- and HD-MSCs were cultured with monocytes, only the MDS-MSCs acquired phenotypic and metabolic properties of myeloid-derived suppressor cells (MDSCs), with resulting suppression of NK cell function, along with T cell proliferation. A MSC transcriptome was observed in MDS-MSCs compared with HD-MSCs, including increased expression of the ROS regulator, ENC1. High ENC1 expression in MDS-MSCs induced suppressive monocytes with increased INHBA, a gene that encodes for a member of the TGF-β superfamily of proteins.