Sylvestatkinson7351
Chimeric antigen receptor (CAR) engineering of T cells has revolutionized the field of cellular therapy for the treatment of cancer. Despite this success, autologous CAR-T cells have recognized limitations that have led to the investigation of other immune effector cells as candidates for CAR modification. Recently, natural killer (NK) cells have emerged as safe and effective platforms for CAR engineering. In this article, we review the advantages, challenges, and preclinical and clinical research advances in CAR NK cell engineering for cancer immunotherapy. We also briefly consider the feasibility and potential benefits of applying other immune effector cells as vehicles for CAR expression. SIGNIFICANCE CAR engineering can redirect the specificity of immune effector cells, converting them to a much more potent weapon to combat cancer cells. Expanding this strategy to immune effectors beyond conventional T lymphocytes could overcome some of the limitations of CAR T cells, paving the way for safer and more effective off-the-shelf cellular therapy products.The small-molecule drug BI-3802 induced the formation of BCL6 filaments leading to degradation.In mice and nonhuman primates, a GDF-15 antibody blocked platinum-based chemotherapy side effects.IFNγ-producing NK cells induced TME remodeling and orchestrated T cell-mediated tumor control.The use of targeted small-molecule therapeutics and immunotherapeutics has been limited to date in pediatric oncology. Recently, the number of pediatric approvals has risen, and regulatory initiatives in the United States and Europe have aimed to increase the study of novel anticancer therapies in children. Challenges of drug development in children include the rarity of individual cancer diagnoses and the high prevalence of difficult-to-drug targets, including transcription factors and epigenetic regulators. Selleck Solutol HS-15 Ongoing pediatric adaptation of biomarker-driven trial designs and further exploration of agents targeting non-kinase drivers constitute high-priority objectives for future pediatric oncology drug development. SIGNIFICANCE Increasing attention to drug development for children with cancer by regulators and pharmaceutical companies holds the promise of accelerating the availability of new therapies for children with cancer, potentially improving survival and decreasing the acute and chronic toxicities of therapy. However, unique approaches are necessary to study novel therapies in children that take into account low patient numbers, the pediatric cancer genomic landscape and tumor microenvironment, and the need for pediatric formulations. It is also critical to evaluate the potential for unique toxicities in growing hosts without affecting the pace of discovery for children with these life-threatening diseases.MEK inhibition caused naïve CD8+ T cells to adopt a stem cell-like memory T-cell (TSCM) phenotype.Because of their potent antitumor activity and their proinflammatory role, natural killer (NK) cells are at the forefront of efforts to develop immuno-oncologic treatments. NK cells participate in immune responses to tumors by killing target cells and producing cytokines. However, in the immunosuppressive tumor microenvironment, NK cells become dysfunctional through exposure to inhibitory molecules produced by cancer cells, leading to tumor escape. We provide an overview of what is known about NK tumor infiltration and surveillance and about the mechanisms by which NK cells become dysfunctional. SIGNIFICANCE The functions of tumor-infiltrating NK cells may be impaired. This review aims to describe the various mechanisms by which tumors alter NK-cell functions.In a phase II clinical trial, FLT3 ligand (FLT3L) enhanced immune cell and antibody responses.Natural killer (NK) cells accumulate at the fetal-maternal interface and represent 70% of immune cells in the decidua (dNK) at first-trimester pregnancy; they are immune-tolerant toward the semiallogenic fetus and are "nurturing" and nonkilling NK cells. A subset of NK cells in patients with cancer have features in common with dNK, which include expressing CD56, CD9, CD49a, and CXCR3, being poorly cytotoxic and proangiogenic, and mimicking the decidual nurturing role. In the oncologic patient, several factors can "decidualize" NK cells, turning them into immune-suppressant, growth-promoting proangiogenic cells. Here, we suggest ways to sharpen their blunted blades and intercept and curb their cancer-nurturing attitudes to restore their cytotoxic capabilities.HPV+ head and neck squamous cell carcinomas exhibited diverse tumor-infiltrating B-cell subsets.
Observational studies have demonstrated that type 2 diabetes is a stronger risk factor for coronary heart disease (CHD) in women compared with men. However, it is not clear whether this reflects a sex differential in the causal effect of diabetes on CHD risk or results from sex-specific residual confounding.
Using 270 single nucleotide polymorphisms (SNPs) for type 2 diabetes identified in a type 2 diabetes genome-wide association study, we performed a sex-stratified Mendelian randomization (MR) study of type 2 diabetes and CHD using individual participant data in UK Biobank (251,420 women and 212,049 men). Weighted median, MR-Egger, MR-pleiotropy residual sum and outlier, and radial MR from summary-level analyses were used for pleiotropy assessment.
MR analyses showed that genetic risk of type 2 diabetes increased the odds of CHD for women (odds ratio 1.13 [95% CI 1.08-1.18] per 1-log unit increase in odds of type 2 diabetes) and men (1.21 [1.17-1.26] per 1-log unit increase in odds of type 2 diabetes). Sensitivity analyses showed some evidence of directional pleiotropy; however, results were similar after correction for outlier SNPs.
This MR analysis supports a causal effect of genetic liability to type 2 diabetes on risk of CHD that is not stronger for women than men. Assuming a lack of bias, these findings suggest that the prevention and management of type 2 diabetes for CHD risk reduction is of equal priority in both sexes.
This MR analysis supports a causal effect of genetic liability to type 2 diabetes on risk of CHD that is not stronger for women than men. Assuming a lack of bias, these findings suggest that the prevention and management of type 2 diabetes for CHD risk reduction is of equal priority in both sexes.