Adairjosefsen6181

Z Iurium Wiki

Verze z 4. 1. 2025, 19:13, kterou vytvořil Adairjosefsen6181 (diskuse | příspěvky) (Založena nová stránka s textem „35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.We investigate the stochastic gravitational wave background (SGWB) f…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.We investigate the stochastic gravitational wave background (SGWB) from cosmic domain walls (DWs) caused by quantum fluctuations of a light scalar field ϕ during inflation. Large-scale perturbations of ϕ lead to large-scale perturbations of DW energy density and anisotropies in the SGWB. We find that the angular power spectrum of this SGWB is scale invariant and at least of the order of 10^-2, which is a distinctive feature of observational interest. Since we have not detected primordial gravitational waves yet, anisotropies of the SGWB provide a nontrivial opportunity to verify the rationality of inflation and detect the energy scale of inflation, especially for low-scale inflationary models. Square kilometer array has the opportunity to detect the anisotropies of such SGWBs. The common-spectrum process observed recently by NANOGrav could also be interpreted by the SGWB from cosmic DWs.Monolayer graphene aligned with hexagonal boron nitride (h-BN) develops a gap at the charge neutrality point (CNP). This gap has previously been extensively studied by electrical transport through thermal activation measurements. Here, we report the determination of the gap size at the CNP of graphene/h-BN superlattice through photocurrent spectroscopy study. We demonstrate two distinct measurement approaches to extract the gap size. A maximum of ∼14  meV gap is observed for devices with a twist angle of less than 1°. This value is significantly smaller than that obtained from thermal activation measurements, yet larger than the theoretically predicted single-particle gap. Our results suggest that lattice relaxation and moderate electron-electron interaction effects may enhance the CNP gap in graphene/h-BN superlattice.Graphene is a very promising test bed for the field of electron quantum optics. However, a fully tunable and coherent electronic beam splitter is still missing. We report the demonstration of electronic beam splitters in graphene that couple quantum Hall edge channels having opposite valley polarizations. The electronic transmission of our beam splitters can be tuned from zero to near unity. By independently setting the beam splitters at the two corners of a graphene p-n junction to intermediate transmissions, we realize a fully tunable electronic Mach-Zehnder interferometer. This tunability allows us to unambiguously identify the quantum interferences due to the Mach-Zehnder interferometer, and to study their dependence with the beam-splitter transmission and the interferometer bias voltage. The comparison with conventional semiconductor interferometers points toward universal processes driving the quantum decoherence in those two different 2D systems, with graphene being much more robust to their effect.We use femtosecond electron diffraction to study ultrafast lattice dynamics in the highly correlated antiferromagnetic (AFM) semiconductor NiO. Using the scattering vector (Q) dependence of Bragg diffraction, we introduce Q-resolved effective temperatures describing the transient lattice. We identify a nonthermal lattice state with preferential displacement of O compared to Ni ions, which occurs within ∼0.3  ps and persists for 25 ps. We associate this with transient changes to the AFM exchange striction-induced lattice distortion, supported by the observation of a transient Q asymmetry of Friedel pairs. Our observation highlights the role of spin-lattice coupling in routes towards ultrafast control of spin order.Recently, a new family of symmetry-protected higher-order topological insulators has been proposed and was shown to host lower-dimensional boundary states. However, with the existence of the strong disorder in the bulk, the crystal symmetry is broken, and the associated corner states are disappeared. It is well known that the emergence of robust edge states and quantized transport can be induced by adding sufficient disorders into a topologically trivial insulator, that is the so-called topological Anderson insulator. The question is whether disorders can also cause the higher-order topological phase. This is not known so far, because interactions between disorders and the higher-order topological phases are completely different from those with the first-order topological system. Here, we demonstrate theoretically that the disorder-induced higher-order topological corner state and quantized fraction corner charge can appear in a modified Haldane model. In experiments, we construct the classical analog of such higher-order topological Anderson insulators using electric circuits and observe the disorder-induced corner state through the voltage measurement. Our work defies the conventional view that the disorder is detrimental to the higher-order topological phase, and offers a feasible platform to investigate the interaction between disorders and higher-order topological phases.Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. KN-93 cost Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^(2)(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.The temporal stability of millisecond pulsars is remarkable, rivaling even some terrestrial atomic clocks at long timescales. Using this property, we show that millisecond pulsars distributed in the galactic neighborhood form an ensemble of accelerometers from which we can directly extract the local galactic acceleration. From pulsar spin period measurements, we demonstrate acceleration sensitivity with about 1σ precision using 117 pulsars. We also present a complementary analysis using orbital periods of 13 binary pulsar systems that eliminates the systematics associated with pulsar braking and results in a local acceleration of (1.7±0.5)×10^-10  m/s^2 in good agreement with expectations. This work is a first step toward dynamically measuring acceleration gradients that will eventually inform us about the dark matter density distribution in the Milky Way galaxy.

Autoři článku: Adairjosefsen6181 (Bowles Singh)