Ahmedwilliamson9084
Accurate modelling of intracellular calcium ion ([Formula see text]) concentration evolution is valuable as it is known to rapidly increase during a Traumatic Brain Injury. In the work presented here, our older non-spatial model dealing with the effect of mechanical stress upon the [Formula see text] transportation in a neuron is spatialized by considering the brain tissue as a solid continuum with the [Formula see text] activity occurring at every material point. Starting with one-dimensional representation, the brain tissue geometry is progressively made realistic and under the action of pressure or kinematic impulses, the effect of dimensionality and material behaviour on the correlation between the stress and concomitant [Formula see text] concentration is investigated. The spatial calcium kinetics model faithfully captures the experimental observations concerning the [Formula see text] concentration, load rate, magnitude and duration and most importantly shows that the critical location for primary injury may not be the most important location as far as secondary injury is concerned.In this work, we present a novel modeling framework to investigate the effects of collateral circulation into the coronary blood flow physiology. A prototypical model of the coronary tree, integrated with the concept of Collateral Flow Index (CFI), is employed to gain insight about the role of model parameters associated with the collateral circuitry, which results in physically-realizable solutions for specific CFI data. Then, we discuss the mathematical feasibility of pressure-derived CFI, anatomical implications and practical considerations involving the estimation of model parameters in collateral connections. A sensitivity analysis is carried out, and the investigation of the impact of the collateral circulation on FFR values is also addressed.Paddy fields near metalliferous mining area are sometimes contaminated by tailings or mine water. In the contaminated paddy fields around the abandoned Seoseong mine, South Korea, groundwater, surface water, and soil samples were assessed to infer sources (tailings and/or mine water) of soil contamination. Major contaminants in the soil included As and Pb which were not detected in the adit water. Moreover, δ34SSO4 values of groundwater at contaminated downstream paddy fields were higher than those of ground and surface water in the mining area, which indicated water-derived contamination is not evident. The Zn/Cd ratios of soil were assessed to verify the source (tailings) of soil contamination. Plots of the Zn/Cd ratio against Zn and As contents showed that soil samples contaminated from tailings had Zn/Cd ratios (108-247) which were similar with the Zn/Cd range of the tailings. In contrast, the ratios of the soil samples were different from the Zn/Cd range of contaminated water samples. The Zn/Cd ratios were determined using 0.1 M HCl-extractable Cd, and the fraction of 0.1 M HCl-extractable Cd in aqua regia-digestible Cd increased with increasing aqua regia-digestible Cd content. These observations suggest that Zn/Cd ratios in contaminated soil are primarily controlled by 0.1 M HCl-extractable Cd, possibly due to the greater exchangeability of 0.1 M HCl-extractable Cd than that of total Cd. This suggests that Zn/Cd ratios determined using 0.1 M HCl-extractable Cd can be especially sensitive and useful for determining sources of soil contamination in mining areas such as tailings or contaminated water.Blood-brain barrier (BBB) disruption has been recognized as an early hallmark of multiple sclerosis (MS) pathology. selleck products Our previous studies have shown that 2-(2-Benzofuranyl)-2-imidazoline (2-BFI) protected against experimental autoimmune encephalomyelitis (EAE), a classic animal model of MS. However, the potential effects of 2-BFI on BBB permeability have not yet been evaluated in the context of EAE. Herein, we aimed to investigate the effect of 2-BFI on BBB permeability in both an animal model and an in vitro BBB model using TNF-α to imitate the inflammatory damage to the BBB in MS. In the animal model, 2-BFI reduced neurological deficits and BBB permeability in EAE mice compared with saline treatment. The Western blot results indicated that 2-BFI not only alleviated the loss of the tight junction protein occludin caused by EAE but also inhibited the activation of the NR1-ERK signaling pathway. In an in vitro BBB model, 2-BFI (100 μM) alleviated the TNF-α-induced increase in permeability and reduction in expression of occludin in monolayer bEnd.3 cells. Similar protective effects were also observed after treatment with the NMDAR antagonist MK801. The Western blot results showed that the TNF-α-induced BBB breakdown and increase in NMDAR subunit 1 (NR1) levels and ERK phosphorylation could be blocked by pretreatment with 2-BFI or MK801. However, no additional effect was observed on BBB permeability or the expression of occludin and p-ERK after pretreatment with both 2-BFI and MK801. Our study indicates that 2-BFI alleviates the disruption of BBB in the context of inflammatory injury similar to that of MS by targeting NMDAR1, as well as by likely activating the subsequent ERK signaling pathway. These results provide further evidence for 2-BFI as a potential drug for the treatment of MS.As sessile organisms, plants respond to changing environments modulating their genetic expression, metabolism and postembryonic developmental program (PDP) to adapt. Among environmental stressor, lead (Pb) is one of the most hazardous pollutants which limits crop productivity. Here, we describe in detail the effects of a wide range of concentrations of Pb on growth and development and a possible convergence with phosphate (Pi) starvation response. We found that the response to Pb presents a biphasic curve dose response in biomass accumulation below 400 µM show a stimulatory effect meanwhile at Pb doses up to 600 µM effects are inhibitory. We found that +Pb (800 µM) modifies root system architecture (RSA) and induces acidification media, according to in silico ion interaction, in the growing medium Pb and Pi coprecipitate and plants grow in both Pi deficiency and Pb stress at the same time, however in spite of seedlings are under Pi starvation AtPT2 expression are Pb downregulated indicating that in addition to Pi starvation stress, Pb regulates physiological responses in root system.