Aguirreortiz7781

Z Iurium Wiki

Verze z 3. 1. 2025, 20:39, kterou vytvořil Aguirreortiz7781 (diskuse | příspěvky) (Založena nová stránka s textem „Lysine crotonylation (Kcr) is a histone post-translational modification that is implicated in numerous epigenetic pathways and diseases. Recognition of Kcr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Lysine crotonylation (Kcr) is a histone post-translational modification that is implicated in numerous epigenetic pathways and diseases. Recognition of Kcr by YEATS domains has been proposed to occur through intermolecular amide-π and alkene-π interactions, but little is known about the driving force of these key interactions. Herein, we probed the recognition of lysine crotonylation and acetylation by the AF9 YEATS domain through incorporation of noncanonical Phe analogs with distinct electrostatics at two positions. We found that amide-π interactions between AF9 and acyllysines are electrostatically tunable, with electron-rich rings providing more favorable interactions. This differs from trends in amide-heteroarene interactions and provides insightful information for therapeutic design. Additionally, we report for the first time that CH-π interactions at Phe28 directly contribute to AF9's recognition of acyllysines, illuminating differences among YEATS domains, as this residue is not highly conserved but has been shown to impart selectivity for specific post-translational modification.Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.Recent studies have revealed significant roles of neurotransmitters and gut microbiota along the gut-brain axis in Parkinson's disease (PD); however, the potential mechanisms remain poorly understood. In the current study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced characteristic PD neurobehavior changes accompanied by increased α-synuclein, apoptotic protein Bim, and cleaved caspase-3 and decreased expression of tyrosine hydroxylase (TH). Meanwhile, the tryptophan (Trp) and tyrosine (Tyr) neurotransmitter metabolites involving kynurenine (KYN), serotonin (5-HT), and dopamine (DA) pathways were significantly changed in serum. Furthermore, the step-limited enzymes, which are responsible for the key metabolic pathways of these neurotransmitters, were obviously dysregulated. The 16S rRNA gene sequence results indicated that the abundance and diversity of the microbiota were obviously decreased in MPTP-treated mice, the presence of Ruminococcus, Parabacteroides and Parasutterella genera were obviously increased, while Coriobacteriaceae, Flavonifractor, Lachnospiraceae, Lactobacillaceae, and Rikenellaceae abundance was markedly decreased. The connectivity between the gut microbiota and neurotransmitter metabolism revealed that the gut microbiota dysbiosis was associated with disturbance of the DA, KYN, and 5-HT metabolic pathways. Therefore, our results provide evidence that gut-microbiota-brain axis disturbance may play an important role in PD development and targeting this axis might provide a promising therapeutic strategy for PD.The dopamine transporter (DAT) is critical for spatiotemporal control of dopaminergic neurotransmission and is the target for therapeutic agents, including ADHD medications, and abused substances, such as cocaine. see more Here, we develop new fluorescently labeled ligands that bind DAT with high affinity and enable single-molecule detection of the transporter. The cocaine analogue MFZ2-12 (1) was conjugated to novel rhodamine-based Janelia Fluorophores (JF549 and JF646). High affinity binding of the resulting ligands to DAT was demonstrated by potent inhibition of [3H]dopamine uptake in DAT transfected CAD cells and by competition radioligand binding experiments on rat striatal membranes. Visualization of binding was substantiated by confocal or TIRF microscopy revealing selective binding of the analogues to DAT transfected CAD cells. Single particle tracking experiments were performed with JF549-conjugated DG3-80 (3) and JF646-conjugated DG4-91 (4) on DAT transfected CAD cells enabling quantification and categorization of the dynamic behavior of DAT into four distinct motion classes (immobile, confined, Brownian, and directed). Finally, we show that the ligands can be used in direct stochastic optical reconstruction microscopy (dSTORM) experiments permitting further analyses of DAT distribution on the nanoscale. In summary, these novel fluorescent ligands are promising new tools for studying DAT localization and regulation with single-molecule resolution.Kinase inhibitors are widely used in antitumor research, but there are still many problems such as drug resistance and off-target toxicity. A more suitable solution is to design a multitarget inhibitor with certain selectivity. Herein, computational and experimental studies were applied to the discovery of dual inhibitors against FGFR4 and EGFR. A quantitative structure-property relationship (QSPR) study was carried out to predict the FGFR4 and EGFR activity of a data set consisting of 843 and 5088 compounds, respectively. Four different machine learning methods including support vector machine (SVM), random forest (RF), gradient boost regression tree (GBRT), and XGBoost (XGB) were built using the most suitable features selected by the mutual information algorithm. As for FGFR4 and EGFR, SVM showed the best performance with R2test-FGFR4 = 0.80 and R2test-EGFR = 0.75, demonstrating excellent model stability, which was used to predict the activity of some compounds from an in-house database. Finally, compound 1 was selected, which exhibits inhibitory activity against FGFR4 (IC50 = 86.

Autoři článku: Aguirreortiz7781 (Grace Moses)