Kearnsrichard1517

Z Iurium Wiki

Verze z 3. 1. 2025, 12:14, kterou vytvořil Kearnsrichard1517 (diskuse | příspěvky) (Založena nová stránka s textem „© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Biocompatible and proteolysis-resistant poly-β-peptides have broad applications and are dominantly…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Biocompatible and proteolysis-resistant poly-β-peptides have broad applications and are dominantly synthesized via the harsh and water-sensitive ring-opening polymerization of β-lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3 )2 . We have developed a controllable and water-insensitive ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides (β-NTAs) that can be operated in open vessels to prepare poly-β-peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of β-NTA polymerization and resulting poly-β-peptides, which is validated by the finding of a HDP-mimicking poly-β-peptide with potent antimicrobial activities. The living β-NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore-labelled poly-β-peptide. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.The selective hydrogenation of organic carbonates to methanol is a relevant transformation to realize flexible processes for the recycling of waste CO2 with renewable H2 mediated by condensed carbon dioxide surrogates. Oxide-supported copper nanoparticles are promising solid catalysts for this selective hydrogenation. However, essential for their optimization is to rationalize the prominent impact of the oxide support on performance. Herein, the role of Lewis acid centers, exposed on the oxide support at the periphery of the Cu nanoparticles, was systematically assessed. For the hydrogenation of propylene carbonate, as a model cyclic carbonate, the conversion rate, the apparent activation energy, and the selectivity to methanol correlate with the Lewis acidity of the coordinatively unsaturated cationic sites exposed on the oxide support. SKI-606 in vitro Lewis sites of markedly low and high electron-withdrawing character promote unselective decarbonylation and decarboxylation reaction pathways, respectively. Supports exposing Lewis sites of intermediate acidity maximize the selectivity to methanol while inhibiting acid-catalyzed secondary reactions of the propanediol product, and thus enable its recovery in cyclic processes of CO2 hydrogenation mediated by condensed carbonate derivatives. These findings help rationalize metal-support promotion effects that determine the performance of supported metal nanoparticles in this and other selective hydrogenation reactions of significance in the context of sustainable chemistry. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.Enhancement of cell-matrix adhesion is preferable and crucial in various fields of tissue engineering. Integrins are important receptors that facilitate cell-matrix adhesion, mediated by intracellular molecules and crosstalk with the cadherin adhesion pathway, which mainly facilitates cell-cell adhesion. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a pivot in the crosstalk between the cadherin adhesion pathway and the integrin adhesion pathway. The phosphorylation state of PTP1B tyrosine-152 (Y152) plays a central role in balancing the two different cell adhesion forms. In this study, a PTP1B Y152 region mimicking (152RM) peptide was designed to decrease the phosphorylation of PTP1B Y152 via competitive inhibition. As a result, the dissociation of cadherin complexes and the release of PTP1B from cadherin had sharply increased, and Src, an important intracellular component of integrin, was activated, indicating that the cadherin adhesion pathway was inhibited, whereas the integrin adhesion pathway was enhanced. Moreover, upon treatment with the 152RM peptide, we observed that the early adhesion of human bone marrow-derived mesenchymal stem cells (MSCs) was accelerated and the anchoring of MSCs on the surface of integrin ligands was enhanced by an enhanced matrix adhesion ability of MSCs themselves. Importantly, the 152RM peptide significantly promoted the adhesion efficiency of MSCs in the selective cell retention technology, which fabricates instant bone implants in clinical settings, to stimulate osteogenesis in vivo. © 2020 John Wiley & Sons, Ltd.The Wickerhamiella and Starmerella genera form a clade (W/S clade) that branches close to Yarrowia lipolytica in the Saccharomycotina species tree. It comprises approximately 90 recognized species and 50 putative new species not formally described yet. The large majority of the members of the W/S clade are ecologically associated with flowers and floricolous insects. Many species exhibit unusual metabolic traits, like fructophily and the production of sophorolipids, which are glycolipids that can be used as environmentally friendly biosurfactants. Genomic data have not only firmly established the W/S clade but have also revealed a tumultuous evolution of metabolism marked by losses and gains of important metabolic pathways, among which alcoholic fermentation. Possibly the most surprising finding brought to light by comparative genomics concerned the large number of genes acquired by some species of the W/S clade from bacteria through horizontal gene transfer, many of which were shown to be functional in their new setting. This was facilitated by the genetic tractability of one species in the clade, Starmerella bombicola, which is used for the industrial production of sophorolipids. We suggest that high-density coverage of genome sequencing in this clade, combined with the possibility to conduct molecular genetics experiments in at least one species, has the potential to set the stage for yet more exciting discoveries concerning the evolution of yeast metabolism. © 2020 John Wiley & Sons, Ltd.An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side-chain polymers to be grafted from the pendant RAFT agent by a radical-mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one-pot tandem without intermediate purification. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Autoři článku: Kearnsrichard1517 (Blackwell Kim)