Lyngeroman7184

Z Iurium Wiki

Verze z 3. 1. 2025, 00:09, kterou vytvořil Lyngeroman7184 (diskuse | příspěvky) (Založena nová stránka s textem „ifferentiation into hypertrophic chondrocytes initiates a remodeling program in which IL-34 may be involved.The MNI CIVET pipeline for automated extraction…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

ifferentiation into hypertrophic chondrocytes initiates a remodeling program in which IL-34 may be involved.The MNI CIVET pipeline for automated extraction of cortical surfaces and evaluation of cortical thickness from in-vivo human MRI has been extended for processing macaque brains. Processing is performed based on the NIMH Macaque Template (NMT), as the reference template, with the anatomical parcellation of the surface following the D99 and CHARM atlases. The modifications needed to adapt CIVET to the macaque brain are detailed. Results have been obtained using CIVET-macaque to process the anatomical scans of the 31 macaques used to generate the NMT and another 95 macaques from the PRIME-DE initiative. It is anticipated that the open usage of CIVET-macaque will promote collaborative efforts in data collection and processing, sharing, and automated analyses from which the non-human primate brain imaging field will advance.Myelin is vital for healthy neuronal development, and can therefore provide valuable information regarding neuronal maturation. Anatomical and diffusion weighted images (DWI) possess information related to the myelin content and the current study investigates whether quantitative myelin markers can be extracted from anatomical and DWI using neural networks. Thirteen volunteers (mean age 29y) are included, and for each subject, a residual neural network was trained using spatially undersampled reference myelin-water markers. The network is trained on a voxel-by-voxel basis, resulting in a large amount of training data for each volunteer. The inputs used are the anatomical contrasts (cT1w, cT2w), the standardized T1w/T2w ratio, estimates of the relaxation times (T1, T2) and their ratio (T1/T2), and common DWI metrics (FA, RD, MD, λ1, λ2, λ3). Furthermore, to estimate the added value of the DWI metrics, neural networks were trained using either the combined set (DWI, T1w and T2w) or only the anatomical (T1w and T2w) images. The reconstructed myelin-water maps are in good agreement with the reference myelin-water content in terms of the coefficient of variation (CoV) and the intraclass correlation coefficient (ICC). A 6-fold undersampling using both anatomical and DWI metrics resulted in ICC = 0.68 and CoV = 5.9%. Moreover, using twice the training data (3-fold undersampling) resulted in an ICC that is comparable to the reproducibility of the myelin-water imaging itself (CoV = 5.5% vs. CoV = 6.7% and ICC = 0.74 vs ICC = 0.80). To achieve this, beside the T1w, T2w images, DWI is required. This preliminary study shows the potential of machine learning approaches to extract specific myelin-content from anatomical and diffusion-weighted scans.Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.This paper proposes Shared Component Analysis (SCA) as an alternative to Principal Component Analysis (PCA) for the purpose of dimensionality reduction of neuroimaging data. The trend towards larger numbers of recording sensors, pixels or voxels leads to richer data, with finer spatial resolution, but it also inflates the cost of storage and computation and the risk of overfitting. PCA can be used to select a subset of orthogonal components that explain a large fraction of variance in the data. This implicitly equates variance with relevance, and for neuroimaging data such as electroencephalography (EEG) or magnetoencephalography (MEG) that assumption may be inappropriate if (latent) sources of interest are weak relative to competing sources. SCA instead assumes that components that contribute to observable signals on multiple sensors are of likely interest, as may be the case for deep sources within the brain as a result of current spread. In SCA, steps of normalization and PCA are applied iteratively, linearly transforming the data such that components more widely shared across channels appear first in the component series. The paper explains the motivation, defines the algorithm, evaluates the outcome, and sketches a wider strategy for dimensionality reduction of which this algorithm is an example. SCA is intended as a plug-in replacement for PCA for the purpose of dimensionality reduction.The rapid adoption of marmosets in neuroscience has created a demand for three dimensional (3D) atlases of the brain of this species to facilitate data integration in a common reference space. We report on a new open access template of the marmoset cortex (the Nencki-Monash, or NM template), representing a morphological average of 20 brains of young adult individuals, obtained by 3D reconstructions generated from Nissl-stained serial sections. The method used to generate the template takes into account morphological features of the individual brains, as well as the borders of clearly defined cytoarchitectural areas. This has resulted in a resource which allows direct estimates of the most likely coordinates of each cortical area, as well as quantification of the margins of error involved in assigning voxels to areas, and preserves quantitative information about the laminar structure of the cortex. Selleck Nedometinib We provide spatial transformations between the NM and other available marmoset brain templates, thus enabling integration with magnetic resonance imaging (MRI) and tracer-based connectivity data.

Autoři článku: Lyngeroman7184 (McNally Have)