Williamsfoster0011
Leaf color mutants are an ideal tool to study chlorophyll biosynthesis, chloroplast development and photosynthesis. In this study, we identified an EMS-induced yellow young leaf mutant C777. The mutant exhibited yellow cotyledons and emerging true leaves with stay-green dots that turn green gradually with leaf growth. Segregation analysis in several populations indicated that the mutant C777 was controlled by a recessive gene yyl-1. learn more Fine mapping delimited the yyl-1 locus to a 45.3 kb region harboring 8 putative genes, but only one SNP (G to A) was identified between C777 and its wild-type parental line in this region which occurred in the 13th exon of CsHD that encodes a histidine and aspartic acid (HD) domain containing protein. This nonsense mutation introduced a stop codon and thus a premature protein. Uniqueness of this mutant allele was verified in 515 cucumber lines. Quantitative real-time PCR revealed significantly reduced expression of CsHD gene in the mutant. Further, silencing the NbHD gene by VIGS in tobacco resulted in virescent young leaves and significantly down-regulated expression of HD gene. These results strongly supported the association of the CsHD gene with the virescent young leaf phenotype in C777. This is the first report to clone and characterize the CsHD gene in the horticultural crops. The results may help understand the functions of the HD gene in chloroplast development and chlorophyll biosynthesis in plants. V.Pectate lyases (PELs) play important roles in plant growth and development, mainly by degrading the pectin in primary cell walls. However, the role of PELs in cotton fiber elongation, which also involves changes in cellular structure and components, is poorly understood. Therefore, we aimed to isolate and characterize GhPEL76, as we suspected it to contribute to the regulation of fiber elongation. Expression analysis (qRT-PCR) revealed that GhPEL76 is predominately expressed in cotton fiber, with significantly different expression levels in long- and short-fiber cultivars, and that GhPEL76 expression is responsive to gibberellic acid and indoleacetic acid treatment. Furthermore, GhPEL76 promoter-driven β-glucuronidase activity was detected in the roots, hypocotyls, and leaves of transgenic Arabidopsis plants, and the overexpression of GhPEL76 in transgenic Arabidopsis promoted the elongation of several organs, including petioles, hypocotyls, primary roots, and trichomes. Additionally, the virus-induced silencing of GhPEL76 in cotton reduced fiber length, and both yeast one-hybrid and transient dual-luciferase assays suggested that GhbHLH13, a bHLH transcription factor that is up-regulated during fiber elongation, activates GhPEL76 expression by binding to the G-box of the GhPEL76 promoter region. Therefore, these results suggest GhPEL76 positively regulates fiber elongation and provide a basis for future studies of cotton fiber development. NAC proteins represent one of the largest transcription factor (TF) families involved in the regulation of plant development and the response to abiotic stress. In the present study, we elucidated the detailed role of GmNAC8 in the regulation of drought stress tolerance in soybean. The GmNAC8 protein was localized in the nucleus, and expression of the GmNAC8 gene was significantly induced in response to drought, abscisic acid (ABA), ethylene (ETH) and salicylic acid (SA) treatments. Thus, we generated GmNAC8 overexpression (OE1 and OE2) and GmNAC8 knockout (KO1 and KO2) lines to determine the role of GmNAC8 in drought stress tolerance. Our results revealed that, compared with the wild type (WT) plant, GmNAC8 overexpression and GmNAC8 knockout lines exhibited significantly higher and lower drought tolerance, respectively. Furthermore, the SOD activity and proline content were significantly higher in the GmNAC8 overexpression lines and significantly lower in the GmNAC8 knockout lines than in the WT plants under drought stress. In addition, GmNAC8 protein was found to physically interact with the drought-induced protein GmDi19-3 in the nucleus. Moreover, the GmDi19-3 expression pattern showed the same trend as the GmNAC8 gene did under drought and hormone (ABA, ETH and SA) treatments, and GmDi19-3 overexpression lines (GmDi19-3-OE9, GmDi19-3-OE10 and GmDi19-3-OE31) showed enhanced drought tolerance compared to that of the WT plants. Hence, the above results indicated that GmNAC8 acts as a positive regulator of drought tolerance in soybean and inferred that GmNAC8 probably functions by interacting with another positive regulatory protein, GmDi19-3. Plant somatic cells can be reprogrammed during in vitro culture. Callus induction is the initial step of a typical plant regeneration system. Recent studies showed that auxin-induced callus formation in multiple organs occurs from the pericycle or pericycle-like cells via a root developmental pathway. However, the molecular control of callus formation is largely unknown. Here, two MYB transcription factors, MYB94 and MYB96, were shown to play negative roles in auxin-induced callus formation in Arabidopsis. MYB94 and MYB96 were expressed in the newly formed callus. myb96, myb94, and myb94 myb96 generated more calli than the WT, with myb94 myb96 producing the most. MYB94 and MYB96 repressed expression of LATERAL ORGAN BOUNDARIES-DOMAIN 29 (LBD29) via directly binding to the gene's promoter. The loss of function of LBD29 partly rescued the callus formation defect of myb94 myb96. Our findings found MYB94 and MYB96 to be important repressors of callus formation and MYB94/96-LBD29 as a new regulatory pathway acting in parallel with ARF7/19-LBDs' pathway to modulate in vitro callus formation. OBJECTIVES The aim of this study was to examine the use of saphenous vein grafts (SVGs) for retrograde crossing during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). BACKGROUND The use of SVGs for retrograde crossing during CTO PCI has received limited study. METHODS A total of 1,615 retrograde CTO PCIs performed between 2012 and 2019 at 25 centers were examined. Clinical, angiographic, and technical characteristics and procedural outcomes were compared among retrograde cases via SVGs (SVG group) versus other collateral vessels (non-SVG group). RESULTS Retrograde CTO PCI via SVGs was performed in 189 cases (12%). Patients in the SVG group were older (mean age 70 ± 9 years vs. 64 ± 10 years; p less then 0.01) and had higher rates of prior myocardial infarction (62% vs. 51%; p less then 0.01) and prior PCI (81% vs. 70%; p less then 0.01). They were more likely to have moderate or severe calcification (81% vs. 65%; p less then 0.01) and moderate or severe tortuosity (53% vs. 44%; p = 0.