Cardenasburns5507
The natural compound, thymoquinone (TQ) has demonstrated potential anticancer properties in inhibiting cell proliferation and promoting apoptosis in myeloid leukemia cells, breast cancer cells, and others. However, the effect mechanism of TQ on AML cells still not fully understood. In this study, the authors examined the effects of TQ on the expression of JAK/STAT-negative regulator genes SOCS-1, SOCS-3, and SHP-1, and their consequences on cell proliferation and apoptosis in HL60 leukemia cells.
MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR).
TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes.
TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.<br />.
.
Fosaprepitant, an NK1 receptor antagonist, inhibits and induces cytochrome P450 3A4 (CYP3A4) as its substrate. Contrarily dexamethasone is metabolized by CYP3A4. Therefore, in combination therapy wherein both agents interact with each other, it is recommended that the dexamethasone dose be reduced in the first two days. Thus far, there are only a few studies on the optimum dose of dexamethasone after day 3. Thus, we aimed to determine the pharmacokinetics of dexamethasone on day3 when administered together with fosaprepitant and investigate the dose-dependent differences in its antiemetic effect in patients with cancer.
Twelve patients with esophageal, stomach, or lung cancer received primary highly emetogenic chemotherapy (HEC). We intravenously administered 9.9 mg and 6.6 mg of dexamethasone on days 1 and 2, respectively, and 6.6 mg or 13.2 mg on day 3 together with the administration of 150 mg fosaprepitant and 0.75 mg palonosetron. We assessed the pharmacokinetics of dexamethasone on day 3 by dose and examined the dose-dependent antiemetic effect.
No differences were observed in the time-to-maximum concentration and blood half-life of dexamethasone between patient groups that received dexamethasone at doses of 6.6 mg and 13.2 mg. In contrast, the area under the blood concentration-time curve and the maximum concentration of dexamethasone correlated with its dose. Moreover, the blood dexamethasone concentration on day 3 increased by twofold after the administration of a higher dose than after a lower dose. The severity of nausea in the delayed phase significantly decreased in a dose-dependent manner.
Administration of a higher dexamethasone dose on day 3 improved the antiemetic effect of the combined regimen in patients with cancer who underwent HEC.<br />.
.
The aim of the study was to develop a model for predicting cancer risk in colorectal polyps' patients (CPPs), as well as to reveal additional prognosis factors for Stage III colorectal cancer based on differences in subpopulations of tetraspanins, tetraspanin-associated and tetraspanin-non-associated proteases in blood plasma exosomes of CPPs and colorectal cancer patients (CRCPs).
The subpopulations of CD151- and Tspan8-positive exosomes, the subpopulations of metalloproteinase at the surface of СD9-positive exosomes and the level of 20S proteasomes in plasma exosomes in 15 CPPs (tubulovillous adenomas) and 60 CRCPs were evaluated using flow cytometry and Western blotting. Logistic regression analysis was performed to predict cancer risk of CPPs.
The levels of 20S proteasomes in exosomes, MMP9+, MMP9+/MMP2+/EMMPRIN+ in CD9-positive blood plasma exosomes are associated with the risk of malignant transformation of colorectal tubulovillous adenomas. In patients with Stage III CRC, the levels of 20S proteasomes (less than 2 units) and MMP9+ subpopulations (more than 61%) in plasma exosomes are unfavorable prognostic factors for overall survival. The levels of 20S proteasomes and ADAM10+/ADAM17- subpopulations in CD9-positive blood plasma exosomes are the most significant values for predicting relapse-free survival.
Protease cargo in CD9-positive blood plasma exosomes is prognostic biomarker for colorectal polyps and colorectal cancer.
Protease cargo in CD9-positive blood plasma exosomes is prognostic biomarker for colorectal polyps and colorectal cancer.
This study aimed to analyze the treatment outcome and toxicities, along with prognosis factors of patients with FIGO 2018 stage III cervical cancer treated with definitive concurrent chemoradiation.
A total of 83 stage III cervical cancer patients with good performance status (ECOG PS 0, 1) were treated with three-dimensional conformal radiation therapy (3D-CRT) combined with chemotherapy (weekly cisplatin), followed by high-dose-rate (HDR) brachytherapy between January 2017 and March 2019 at Vietnam National Cancer hospital. Treatment outcomes and prognosis factors were assessed along with acute and late toxicities.
The 3-year DFS was 67.8% and 3-year OS was 80.3%. On multivariate analyses, short axis of pelvic lymph node diameter of ≥ 15mm, invasion of the lower third of vagina and para-aortic lymph node metastasis were identified as adverse prognostic factors for DFS. The cumulative incidence rate of gastrointestinal and genitourinary toxicity (≥ grade 2) at the 3-year follow-up were 29.6% and 11.6%, respectively.
3D CRT and HDR brachytherapy with concurrent chemotherapy is an effective treatment, with acceptable toxicity for FIGO 2018 stage III cervical cancer in Vietnam.<br />.
.
Drug synergy is the combine effect of drug efficacy. Synergistic combinations of active ingredients have proven to be highly effective and more useful in therapeutics. In contrast, the individual effect of drug is usually undesirable and mostly used for selecting drug-resistant mutations. learn more Purpose of this study was to check synergistic effects of both plants (Barbadensis miller and Marsdenia condurango) against liver and cervical cancer.
Culturing of HeLa (cervical cancer cell line) and HepG2 (liver cancer cell line) cells, IC50 evaluation, viability assays (trypan blue, crystal violet), p53 ELISA and immunocytochemistry, MUSE analysis (count and viability), antioxidants (GSH, SOD, CAT), at the end RT-PCR was performed.
IC50 evaluation was done of each plant individually and with combination for synergistic effects, IC50 with plants combination (synergism) was applied on further viability assays (trypan blue, crystal violet, MUSE analysis via count and viability kit) p53 ELISA and immunocytochemistry for evaluation of cellular apoptosis, antioxidants assays (GSH, SOD, CAT), and RT-PCR with proliferative and apoptotic markers along with internal control.