Mcginnisyildirim9181

Z Iurium Wiki

Verze z 2. 1. 2025, 23:46, kterou vytvořil Mcginnisyildirim9181 (diskuse | příspěvky) (Založena nová stránka s textem „Dispersion of engineered nanoparticles (ENPs) has drawn special research attentions because the environmental behavior, risks, and applications of ENPs are…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Dispersion of engineered nanoparticles (ENPs) has drawn special research attentions because the environmental behavior, risks, and applications of ENPs are greatly dependent on their dispersing status. This review summarizes the latest research progress of dispersion mechanisms, environmental applications in contaminants adsorption, and toxicity of ENPs dispersed in liquid and in solid matrix (3D-ENPs). Dispersion mechanisms of ENPs, including steric hindrance, electrostatic repulsion and "micelle wrapping" are well understood in single dispersing agent, however, the prediction of ENPs dispersion in real environments is not straightforward because of the diversity of structures, components, and properties of natural organic molecule mixtures. The adsorption characteristics, depending on the exposed surface areas in liquid, are significantly different between dispersed and aggregated ENPs. Comparing with the aggregated ENPs, the toxicity of dispersed ENPs is generally enhanced due to the increased uptake, released metal ions, carried contaminants, and induced ROS. 3D-ENPs not only inherit the excellent adsorption performance of ENPs dispersed in liquid, but also are beneficial to the separation and recycle from aqueous solutions due to their 3D rigid structures. However, the adsorption mechanisms as affected by environmental conditions are still unclear. Additionally, the potential risks of 3D-ENPs should be paid more attentions, with an emphasis on free radicals and stability of 3D structure. Organochlorine (OC) profiles have been used as chemical "fingerprints" to infer an animal's foraging area. North Pacific killer whale (Orcinus orca) populations are exposed to different levels and patterns of OCs based on their prey, distribution, and amount of time spent in a particular area. To characterize concentrations and profiles of OCs found in various populations of North Pacific killer whales, polychlorinated biphenyls (PCBs), including dioxin-like congeners, DDTs, and hexachlorobenzene (HCB), were measured in biopsy blubber samples of photo-identified resident (fish-eating) and transient (mammal-eating) killer whales collected from 1994 through 2002 from Russian Far East waters to the waters of the west coast of the United States, representing 10 populations. We compared blubber OC concentrations based on ecotype (resident vs. transient), sex and reproductive maturity, and geographic area. We also examined OC mixtures to determine if we could detect segregated geographical areas (foraging areas) among the six populations with sufficient sample sizes. Transients had significantly higher OC concentrations than residents and adult male whales had consistently higher OC levels compared to adult females, regardless of ecotype. Our OC profile findings indicate segregated foraging areas for the North Pacific killer whales, consistent with observations of their geographic distributions. Several potential health risks have also been associated with exposure to high levels of contaminants in top-level predators including reproductive impairment, immune suppression, skeletal deformities, and carcinoma. The results of this baseline study provide information on the geographic distribution of OCs found in North Pacific killer whales, results which are crucial for assessing the potential health risks associated with OC exposure in this species. Published by Elsevier B.V.Research continues to highlight the link between climate change and health outcomes. There is, however, limited evidence in research, policies and in the Sustainable Development Goals (SDGs) about the impact of environmental factors on noncommunicable diseases (NCDs) for people living in urban areas of sub-Saharan Africa (SSA). Important is that 80% of NCDs are taking place in low- and middle-income countries (LMICs) and linked to a third of the deaths in SSA. The question is, what would these statistics look like if environmental risk factors (e.g., pollution, chemicals) for NCDs, linked to climate change, were prevented and controlled. Revumenib This article presents a framework for understanding climatic pathways' impacts on climate-sensitive NCDs and achieving the SDGs. It further explains how current global mitigation interventions in high income urban settings, with implied health co-benefits for NCD reduction (i.e., promoting use of less polluting vehicles, bicycles, walking, public transport, green spaces), expn SSA, is key. Microplastics released into the environment undergo a variety of aging processes, however, information about the influence of aging on the adsorption behavior of microplastics is limited. In order to better understand the effect of aging polystyrene (PS) on the ability to adsorb heavy metal, H2O2 and Fenton reagent were used to investigate the aging properties of PS. Aging PS with these two different aging agents at pH = 4 and room temperature for the same time. Physical and chemical characterization indicated that aging caused oxidation of the surface of PS and the formation of surface micro-cracks. Based on the 2D-COS analysis, the aging process of PS functional groups could occur in the following sequence 1375 (C-OH) > 1739 (C=O) > 1182 cm-1 (C-O-C) > 1716 (O-C=O). The adsorption experiments for Cd2+ with two different concentrations were carried out by PS with different aging time at room temperature. The adsorption data showed that the adsorption capacity of Cd2+ was significantly enhanced after aging compared with pristine PS, and the adsorption capacity of PS after Fenton aging treatment is much stronger than that after H2O2 aging treatment. The kinetic analysis of the adsorption data indicates that the adsorption process is more consistent with the second-order kinetics than the first-order kinetics, and it is further concluded that the adsorption of Cd2+ by PS is a relatively complicated process. According to the fitting results of adsorption isotherms, the adsorption process of pristine PS mainly occurs on the surface, but with the continuous aging, more adsorption sites may be exposed on the surface of PS, so it can be concluded that the adsorption mechanism of Cd2+ by PS is the coexistence of physics and chemistry. This study indicates aging microplastics may have a significant impact on the destination and migration of metal contaminants, which deserves to be further concerned.

Autoři článku: Mcginnisyildirim9181 (Barrett Spence)