Granthamroed1304

Z Iurium Wiki

Verze z 2. 1. 2025, 23:20, kterou vytvořil Granthamroed1304 (diskuse | příspěvky) (Založena nová stránka s textem „The fate of polybrominated diphenyl ethers (PBDEs) from polyethylene mesh knitted fabrics (PMKFs) to mulched soil and nearby plants was studied. PBDEs in t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The fate of polybrominated diphenyl ethers (PBDEs) from polyethylene mesh knitted fabrics (PMKFs) to mulched soil and nearby plants was studied. PBDEs in the soil sample collected from Tianjin University of Commerce in April 2019 increased significantly after 6 months of PMKF mulching owing to PMKFs as the main input source. The compositional profiles/congener patterns of the PBDEs in the soil and PMKFs became similar after 6 months. High correlations were found between ΣPBDEs in the soil and PMKFs in October 2019, with no significant correlation in April. Plants could take up, accumulate and biotransform PBDEs in contaminated soil. The uptake of BDE-209 by plants was the highest compared with other lesser brominated PBDE congeners, due to its higher log Kow value and molecular weight or size. BDE-47 taken up in the plant was biotransformed via hydroxylation. click here These results prove that the government's PMKF solution to haze is causing environmental problems in bare soil, i.e., PBDE pollution in both soil and nearby plants. The present study provides important pieces of evidence for government and policymakers, and it is recommended that one environmental problem is not solved by creating another.Presence of nanoplastics within aqueous media has raised concerns about their adverse impacts on aquatic organisms. This study evaluated toxic effects of amino-functionalized polystyrene nanoplastics (PS-NH2) with diameters of 90 (PS-NH2-90), 200 (PS-NH2-200) and 300 (PS-NH2-300) nm on green microalgae Chlorella vulgaris. A dose-dependent toxicity response by PS-NH2-90 and/or PS-NH2-200 on biomass and photosynthetic pigment (chlorophyll a) end-points of C. vulgaris was observed. Whereas varied concentrations of PS-NH2-300 had no significant toxic effect on biomass and chlorophyll a end-points compared to control groups (p > 0.05). A comparison of toxicity of similar concentrations of PS-NH2-90, PS-NH2-200 and PS-NH2-300 showed small-sized PS-NH2 were more toxic than large-sized PS-NH2 (toxicity of PS-NH2 increased in the order PS-NH2-300 less then PS-NH2-200 less then PS-NH2-90). With decreasing PS-NH2 size, greater morphological changes and loss of original shape were observed, so that algal density/size reduced, and cell aggregations increased. Since PS-NH2 have high affinity to C. vulgaris due to electrostatic interaction with polysaccharide wall of algae, this could be as the main reason for formation of large aggregates at high concentrations of PS-NH2 compared to low concentrations of PS-NH2 used in algae medium. At high concentrations, PS-NH2 may act as intermediaries for connection of algal cells and therefore formation of aggregates. Field emission scanning electron microscopy images confirmed that high amounts of PS-NH2-90 were found to be embedded and adsorbed on algal cells, thereby limiting transfer of materials, gas exchange and energy between the aqueous medium and algal cells. These data may have serious ecological health implications, as C. vulgaris are important primary producers responsible for producing oxygen in aquatic environments.In this study, a fixed-bed biofilm reactor (biofilter) was developed and applied for oil sands process water (OSPW) remediation by using granular activated carbon (GAC) as packing media. Using quantitative polymerase chain reaction (qPCR) detection, the total bacterial copy number (16S) in the GAC biofiltration system was found to reach a relatively stable level (1.3 ± 0.2 × 109 copies/g GAC) after 62 days of operation, and the thickness of biofilm on GAC surface was 26.7 ± 4.3 μm based on the scan of confocal laser scanning microscopy (CLSM). The established GAC-biofilter showed 95.4% naphthenic acids (NAs) removal from raw OSPW after 2 months of operation. The GAC-biofilter also showed 88.3% NAs removal after a long operation time (2 years), indicating its sustainable bioremediation capacity for OSPW. 16S and 18S rRNA gene-targeted metagenomic sequencing showed that the microbial community in the GAC biofilter had higher diversity and richness than that found in the sand biofilter which was used for OSPW treatment previously. Comamonadaceae and Saccharomycotina were found to be the dominant bacterial and fungal families in the GAC biofilter, respectively. Xenobiotic metabolism function of the microbial community may contribute significantly to the biodegradation of NAs. The GAC biofiltration process is a promising passive OSPW treatment approach that can be used in-situ.Serious harmful effects have been reported for thiophenols, which are widely used industrial materials. To date, little information is available on whether such chemicals can elicit endocrine-related detrimental effects. Herein the potential binding affinity and underlying mechanism of action between human transthyretin (hTTR) and seven halogenated-thiophenols were examined experimentally and computationally. Experimental results indicated that the halogenated-thiophenols, except for pentafluorothiophenol, were powerful hTTR binders. The differentiated hTTR binding affinity of halogenated-thiophenols and halogenated-phenols were observed. The hTTR binding affinity of mono- and di-halo-thiophenols was higher than that of corresponding phenols; while the opposite relationship was observed for tri- and penta-halo-thiophenols and phenols. Our results also confirmed that the binding interactions were influenced by the degree of ligand dissociation. Molecular modeling results implied that the dominant noncovalent interactions in the molecular recognition processes between hTTR and halogenated-thiophenols were ionic pair, hydrogen bonds and hydrophobic interactions. Finally, a model with acceptable predictive ability was developed, which can be used to computationally predict the potential hTTR binding affinity of other halogenated-thiophenols and phenols. Taken together, our results highlighted that more research is needed to determine their potential endocrine-related harmful effects and appropriate management actions should be taken to promote their sustainable use.Heavy metal contamination of sewage sludge is one of the concerns preventing its land application. Traditional processes applied for stabilization of sewage sludge are still inadequate to serve sustainable solutions to heavy metal problem. In this study, fermentation and bioleaching potentials of sewage sludge were investigated in anaerobic reactors for either non-pretreated or ultrasonicated sludge at three different pH regimes (free of pH regulation, acidic, and alkaline). The results of the study revealed that combination of ultrasonication pretreatment and alkaline fermentation performed the best among the other cases, resulting in 33.7% hydrolysis, 10.5% acidification, 11-33% metal leaching, and up to 25% reduction in bioavailability of potentially toxic heavy metals. Bioleaching effluent obtained from the best performing reactor was subjected to membrane-based metal recovery. A supported liquid membrane impregnated with a basic carrier successfully recovered soluble metals from the bioleaching effluent with an efficiency of 39-68%.

Autoři článku: Granthamroed1304 (MacMillan Jordan)