Kirbylemming1879
We show that species differed greatly in their survival, but none of the tested traits accounted for these differences. Yet, survival increased over time, which mirrors the switch from early haphazard shipments to larger organized shipments. Our results imply that it was the quality of care received by the birds that most affected success at this stage of the invasion process.Root-associated fungi and host-specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root-associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high-throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root-associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host-specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host-specific pathogens, as well as phytopathogens. Our work provides evidence that the root-associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.Argopecten nucleus is a functional hermaphroditic pectinid species that exhibits self-fertilization, whose natural populations have usually very low densities. In the present study, the genetic diversity of a wild population from Neguanje Bay, Santa Marta (Colombia), was estimated using microsatellite markers, and the effect of the presence of null alleles on this estimation was assessed. A total of 8 microsatellite markers were developed, the first described for this species, and their amplification conditions were standardized. They were used to determine the genotype of 48 wild individuals from Naguanje Bay, and 1,010 individuals derived from the offspring of 38 directed crosses. For each locus, the frequencies of the identified alleles, including null alleles, were estimated using the statistical package Micro-Checker, and the parental genotypes were confirmed using segregation analysis. Three to 8 alleles per locus with frequencies from 0.001 to 0.632 were detected. selleck chemicals The frequencies of null alleles ranged from 0.10 to 0.45, with Ho from 0.0 to 0.79, and He from 0.53 to 0.80. All loci were in H-W disequilibrium. The null allele frequencies values were high, with lower estimations using segregation analysis than estimated using Micro-Checker. The present results show high levels of population genetic diversity and indicate that null alleles were not the only cause of deviation from H-W equilibrium in all loci, suggesting that the wild population under study presents signs of inbreeding and Wahlund effect.In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter- and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified "indicator" compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.Protected areas (PAs) in the tropics are vulnerable to human encroachment, and, despite formal protection, they do not fully mitigate anthropogenic threats to habitats and biodiversity. However, attempts to quantify the effectiveness of PAs and to understand the status and changes of wildlife populations in relation to protection efficiency remain limited. Here, we used camera-trapping data collected over 8 consecutive years (2009-2016) to investigate the yearly occurrences of medium-to-large mammals within the Udzungwa Mountains National Park (Tanzania), an area of outstanding importance for biological endemism and conservation. Specifically, we evaluated the effects of habitat and proxies of human disturbance, namely illegal hunting with snares and firewood collection (a practice that was banned in 2011 in the park), on species' occurrence probabilities. Our results showed variability in species' responses to disturbance The only species that showed a negative effect of the number of snares found on occurrence probability was the Harvey's duiker, a relatively widespread forest antelope. Similarly, we found a moderate positive effect of the firewood collection ban on only the suni, another common antelope, and a negative effect on a large opportunistic rodent, the giant-pouched rat. Importantly, we found evidence of temporal stability in occurrence probability for all species over the 8-year study period. Our findings suggest that well-managed PAs can sustain mammal populations in tropical forests. However, variability among species in their responses to anthropogenic disturbance necessitates consideration in the design of conservation action plans for multiple taxa.