Pettyappel9136
Area-selective atomic layer deposition is a key technology for modern microelectronics as it eliminates alignment errors inherent to conventional approaches by enabling material deposition only in specific areas. Typically, the selectivity originates from surface modifications of the substrate that allow or block precursor adsorption. The control of the deposition process currently remains a major challenge as the selectivity of the no-growth areas is lost quickly. Here, we show that surface modifications of the substrate strongly manipulate surface diffusion. The selective deposition of TiO2 on poly(methyl methacrylate) and SiO2 yields localized nanostructures with tailored aspect ratios. Controlling the surface diffusion allows tuning such nanostructures as it boosts the growth rate at the interface of the growth and no-growth areas. Kinetic Monte-Carlo calculations reveal that species move from high to low diffusion areas. Further, we identify the catalytic activity of TiCl4 during the formation of carboxylic acid on poly(methyl methacrylate) as the reaction mechanism responsible for the loss of selectivity and show that process optimization leads to higher selectivity. Our work enables the precise control of area-selective atomic layer deposition on the nanoscale and offers new strategies in area-selective deposition processes by exploiting surface diffusion effects.Dirhodium(II) complexes such as [Rh2(TFA)4] bound to a functionalized mesoporous SBA-15 carrier material have proven to be valuable candidates for heterogeneous catalysis in the field of pharmaceutical synthesis. However, the mechanistic steps of immobilization by linker molecules containing carboxyl or amine functionalities remain the subject of discussion. Here we present a theoretical study of possible mechanistic binding pathways for the [Rh2(TFA)4] complex through model representations of synthetically investigated linkers, namely n-butylamine and n-butyric acid. Experimentally proposed intermediates of the immobilization process are investigated and analyzed by density functional theory calculations to gain insights into structural properties and the influence of solvation. NPD4928 An evaluation of the thermodynamic data for all identified intermediates allowed distinguishing between two possible reaction pathways that are characterized by a first axial complexation of either n-butyric acid or n-butylamine. In agreement with results from NMR spectroscopy, singly or doubly n-butylamine-fixated complexes were found to present possible immobilization products. Initial binding through a carboxy-functionalized linker is proposed as the most favorable reaction pathway for the formation of the mixed linker pattern [Rh2(TFA)3]·(n-butylamine)·(n-butyrate). The linkers n-butyric acid and n-butyrate, respectively, are found to exhibit an unaltered binding affinity to the dirhodium complex despite their protonation states, indicating invariance to the acidic environment unlike an immobilization by n-butylamine. These results present a theoretical framework for the rationalization of observed product distributions while also providing inspiration and guidance for the preparation of functionalized heterogeneous SBA-15/dirhodium catalyst systems.An individual virion was long believed to act as an independent infectious unit in virology, until the recent discovery of vesicle-cloaked virus clusters which has greatly challenged this central paradigm. Vesicle-cloaked virus clusters (also known as viral vesicles) are phospholipid-bilayer encapsulated fluid sacs that contain multiple virions or multiple copies of viral genomes. Norovirus is a global leading causative agent of gastroenteritis, and the reported prevalence of vesicle-cloaked norovirus clusters in stool has raised concerns whether the current disinfection, sanitation, and hygiene practices can effectively control environmental pollution by these pathogenic units. In this study, we have demonstrated that vesicle-cloaked murine norovirus (MNV-1) clusters were highly persistent under temperature variation (i.e., freeze-thaw) and they were partially resistant to detergent decomposition. MNV-1 vesicles were 1.89-3.17-fold more infectious in vitro than their free virus counterparts. Most importantly, MNV-1 vesicles were up to 2.16-times more resistant to UV254 disinfection than free MNV-1 at a low viral load in vitro. Interestingly, with the increase of the viral load, free MNV-1 and MNV-1 vesicles showed equivalent resistance to UV254 disinfection. We show that the increased multiplicity of infection provided by vesicles is in part responsible for these attributes. Our study, for the first time, sheds light on the environmental behavior of vesicle-cloaked virus clusters as unique emerging pathogenic units. Our study highlights the need to revisit current paradigms of disinfection, sanitation, and hygiene practices for protecting public health.Studies on complex biological phenomena often combine two or more imaging techniques to collect high-quality comprehensive data directly in situ, preserving the biological context. Mass spectrometry imaging (MSI) and vibrational spectroscopy imaging (VSI) complement each other in terms of spatial resolution and molecular information. In the past decade, several combinations of such multimodal strategies arose in research fields as diverse as microbiology, cancer, and forensics, overcoming many challenges toward the unification of these techniques. Here we focus on presenting the advantages and challenges of multimodal imaging from the point of view of studying biological samples as well as giving a perspective on the upcoming trends regarding this topic. The latest efforts in the field are discussed, highlighting the purpose of the technique for clinical applications.Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge.