Holckfeddersen8225

Z Iurium Wiki

Verze z 2. 1. 2025, 23:08, kterou vytvořil Holckfeddersen8225 (diskuse | příspěvky) (Založena nová stránka s textem „The shape of a plasmonic nanoparticle strongly controls its light-matter interaction, which in turn affects how specific morphologies may be used in applic…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The shape of a plasmonic nanoparticle strongly controls its light-matter interaction, which in turn affects how specific morphologies may be used in applications such as sensing, photodetection, and active pixel displays. Here, we show that particle shape also controls plasmonic photocatalytic activity. Three different Al nanocrystal morphologies, octopods, nanocubes, and nanocrystals, all with very similar plasmon resonance frequencies, were used as photocatalysts for the H2 dissociation reaction. We observe widely varying reaction rates for the three different morphologies. Octopods show a 10 times higher reaction rate than nanocrystals and a 5 times higher rate than nanocubes, with lower apparent activation energies than either nanocubes or nanocrystals by 45% and 49%, respectively. A theoretical model of hot electron direct transfer from photoexcited Al nanoparticles to H2 molecules is consistent with this observed morphological dependence. This research strongly suggests that nanoparticle geometry, in addition to plasmon resonance energy, is a critical factor in plasmonic photocatalyst design.Electrocatalysts remain vitally important for the rational management of intermediate polysulfides (LiPSs) in the realm of Li-S batteries. In terms of transition-metal-based candidates, in situ evolution of electrocatalysts in the course of an electrochemical process has been acknowledged; nevertheless, consensus has not yet been reached on their real functional states as well as catalytic mechanisms. Herein, we report an all-chemical vapor deposition design of the defective vanadium diselenide (VSe2)-vertical graphene (VG) heterostructure on carbon cloth (CC) targeting a high-performance sulfur host. The electrochemistry induces the sulfurization of VSe2 to VS2 at Se vacancy sites, which propels the adsorption and conversion of LiPSs. Accordingly, the VSe2-VG@CC/S electrode harvests an excellent cycling stability at 5.0 C with a capacity decay of only 0.039% per cycle over 800 cycles, accompanied by a high areal capacity of 4.9 mAh cm-2 under an elevated sulfur loading of 9.6 mg cm-2. Theoretical simulation combined with operando characterizations reveals the key role played by the Se vacancy with respect to the electrocatalyst evolution and LiPS regulation. This work offers insight into the rational design of heterostructure sulfur hosts throughout defect engineering.Currently, a comprehensive understanding of the relationship between atomic structures and optical properties of ultrasmall metal nanoclusters with diameters between 1 and 3 nm is lacking. To address this challenge, it is necessary to develop tools for perturbing the atomic structure and modulating the optical properties of metal nanoclusters beyond what can be achieved using synthetic chemistry. Here, we present a systematic high-pressure study on a series of atomically precise ligand-protected metal nanoclusters. A diamond anvil cell is used as a high-pressure chamber to gradually compress the metal nanoclusters, while their optical properties are monitored in situ. Our experimental results show that the photoluminescence (PL) of these nanoclusters is enhanced by up to 2 orders of magnitude at pressures up to 7 GPa. The absorption onset red-shifts with increasing pressure up to ∼12 GPa. Density functional theory calculations reveal that the red-shift arises because of narrowing of the spacing between discrete energy levels of the cluster due to delocalization of the core electrons to the carbon ligands. The pressure-induced PL enhancement is ascribed to (i) the enhancement of the near-band-edge transition strength, (ii) suppression of the nonradiative vibrations, and (iii) hindrance of the excited-state structural distortions. Overall, our results demonstrate that high pressure is an effective tool for modulating the optical properties and improving the luminescence brightness of metal nanoclusters. The insights into structure-property relations obtained here also contribute to the rational design of metal nanoclusters for various optical applications.Sensors based on two-dimensional (2D) field-effect transistors (FETs) are extremely sensitive and can detect charged analytes with attomolar limits of detection (LOD). Despite some impressive LODs, the operating mechanisms and factors that determine the signal-to-noise ratio in 2D FET-based sensors remain poorly understood. selleck kinase inhibitor These uncertainties, coupled with an expansive design space for sensor layout and analyte positioning, result in a field with many reported highlights but limited collective progress. Here, we provide insight into sensing mechanisms of 2D molybdenum disulfide (MoS2) FETs by realizing precise control over the position and charge of an analyte using a customized atomic force microscope (AFM), with the AFM tip acting as an analyte. The sensitivity of the MoS2 FET channel is revealed to be nonuniform, manifesting sensitive hotspots with locations that are stable over time. When the charge of the analyte is varied, an asymmetry is observed in the device drain-current response, with analytes acting to turn the device off leading to a 2.5× increase in the signal-to-noise ratio (SNR). We developed a numerical model, applicable to all FET-based charge-detection sensors, that confirms our experimental observation and suggests an underlying mechanism. Further, extensive characterization of a set of different MoS2 FETs under various analyte conditions, coupled with the numerical model, led to the identification of three distinct SNRs that peak with dependence on the layout and operating conditions used for a sensor. These findings reveal the important role of analyte position and coverage in determining the optimal operating bias conditions for maximal sensitivity in 2D FET-based sensors, which provides key insights for future sensor design and control.A heat-up method for quantum dots (QDs) synthesis holds distinctive benefits for large-scale production with its simplicity, scalability, and high reproducibility. Its applications, however, have been limited because it inevitably yields a strong overlap between the nucleation and the growth stages. We addressed this long-standing problem by introducing a precursor having separated reaction paths for nucleation and growth. Unlike existing precursors, which employ a shared intermediate for both reactions, 9-mercapto-9-borabicyclo[3.3.1]nonane (BBN-SH) induces growth via surface-assisted conversion and drives nucleation via cluster formation in solution. Furthermore, this precursor chemistry embeds an efficient mechanism to suppress nucleation during growth. As such, BBN-SH allows heat-up-based growth of high-quality shells that are comparable to those created by the injection method. It is also notable that BBN-SH-based heat-up synthesis shows mitigated sensitivity to temperature fluctuation; therefore, it is highly suitable for industrial-scale reactions.

Autoři článku: Holckfeddersen8225 (Kaae Fry)