Riiseberman2591

Z Iurium Wiki

Verze z 2. 1. 2025, 23:00, kterou vytvořil Riiseberman2591 (diskuse | příspěvky) (Založena nová stránka s textem „Lung adenocarcinoma (LUAD) is one of the common cancers. Studies show that MMP-1 is involved in tumor progression, yet relevant regulatory mechanism in LUA…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Lung adenocarcinoma (LUAD) is one of the common cancers. Studies show that MMP-1 is involved in tumor progression, yet relevant regulatory mechanism in LUAD remains to be further elucidated. Here, we demonstrated from bioinformatics analysis for GEO data that MMP-1 was differentially up-regulated in LUAD. miR-202-3p, identified as the upstream regulator of MMP-1 by both bioinformatics and dual-luciferase assays, was differentially down-regulated in LUAD and presented a negative correlation with MMP-1. Following cell biological experiments proved that knocking down the expression of MMP-1 inhibited the proliferation, migration and invasion of LUAD cells, while overexpressed miR-202-3p posed a similar suppressive effect on cancer progression. Additionally, rescue assay further identified that overexpression of MMP-1 attenuated the suppressive effect of up-regulated miR-202-3p on malignant progression of LUAD cells. In all, this research suggests a mechanism by which MMP-1 under the regulation of miR-202-3p modulates the proliferation, migration and invasion of LUAD cells, which may contribute to the development of new therapeutic strategies.Social bacteria display complex behaviours whereby thousands of cells collectively and dramatically change their form and function in response to nutrient availability and changing environmental conditions. In this review, we focus on Myxococcus xanthus motility, which supports spectacular transitions based on prey availability across its life cycle. Adavosertib in vitro A large body of work suggests that these behaviours require sensory capacity implemented at the single-cell level. Focusing on recent genetic work on a core cellular pathway required for single-cell directional decisions, we argue that signal integration, multi-modal sensing and memory are at the root of decision making leading to multicellular behaviours. Hence, Myxococcus may be a powerful biological system to elucidate how cellular building blocks cooperate to form sensory multicellular assemblages, a possible origin of cognitive mechanisms in biological systems. This article is part of the theme issue 'Basal cognition conceptual tools and the view from the single cell'.Dictyostelid social amoebas respond to starvation by self-organizing into multicellular slugs that migrate towards light to construct spore-bearing structures. These behaviours depend on excitable networks that enable amoebas to produce propagating waves of the chemoattractant cAMP, and to respond by directional movement. cAMP additionally regulates cell differentiation throughout development, with differentiation and cell movement being coordinated by interaction of the stalk inducer c-di-GMP with the adenylate cyclase that generates cAMP oscillations. Evolutionary studies indicate how the manifold roles of cAMP in multicellular development evolved from a role as intermediate for starvation-induced encystation in the unicellular ancestor. A merger of this stress response with the chemotaxis excitable networks yielded the developmental complexity and cognitive capabilities of extant Dictyostelia. This article is part of the theme issue 'Basal cognition conceptual tools and the view from the single cell'.The slime mould Physarum polycephalum, an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum, we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue 'Basal cognition conceptual tools and the view from the single cell'.All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition conceptual tools and the view from the single cell'.

Autoři článku: Riiseberman2591 (Schwarz Hooper)