Truelsenrice9574
The complex bacterial community in a quinoline-degrading denitrifying bioreactor is predominated by several taxa, such as Thauera and Rhodococcus However, it remains unclear how the interactions between the different bacteria mediate quinoline metabolism under denitrifying conditions. In this study, we designed a sequence-specific amplification strategy to isolate the most predominant bacteria and obtained four strains of Thauera aminoaromatica, a representative of a key member in the bioreactor. Tests on these isolates demonstrated that all were unable to degrade quinoline but efficiently degraded 2-hydroxyquinoline, the hypothesized primary intermediate of quinoline catabolism, under nitrate-reducing conditions. However, another isolate, Rhodococcus sp. YF3, corresponding to the second most abundant taxon in the same bioreactor, was found to degrade quinoline via 2-hydroxyquinoline. Trastuzumab deruxtecan The end products and removal rate of quinoline by isolate YF3 largely varied according to the quantity of available oxygen. Sps from Thauera further served to provide metabolites for Rhodococcus Hence, an ecological guild composed of two isolates was assembled, revealing the different roles that keystone organisms play in the microbial community. This report, to the best of our knowledge, is the first on cross-feeding between the initial quinoline degrader and a second bacterium. Specifically, the quinoline degrader (Rhodococcus) did not benefit metabolically from quinoline degradation to 2-hydroxyquinoline but instead benefited from the metabolites produced by the second bacterium (Thauera) when Thauera degraded the 2-hydroxyquinoline. These results could be a significant step forward in the elucidation of the microbial mechanism underlying quinoline-denitrifying degradation. Copyright © 2020 Wu et al.OBJECTIVE Recently, tumours with microsatellite instability (MSI)/defective DNA mismatch repair (dMMR) have gained considerable interest due to the success of immunotherapy in this molecular setting. Here, we aim to clarify clinical-pathological and/or molecular features of this tumour subgroup through a systematic review coupled with a comparative analysis with existing databases, also providing indications for a correct approach to the clinical identification of MSI/dMMR pancreatic ductal adenocarcinoma (PDAC). DESIGN PubMed, SCOPUS and Embase were searched for studies reporting data on MSI/dMMR in PDAC up to 30 November 2019. Histological and molecular data of MSI/dMMR PDAC were compared with non-MSI/dMMR PDAC and with PDAC reference cohorts (including SEER database and The Cancer Genome Atlas Research Network - TCGA project). RESULTS Overall, 34 studies with 8323 patients with PDAC were included in the systematic review. MSI/dMMR demonstrated a very low prevalence in PDAC (around 1%-2%). Compared with conventional PDAC, MSI/dMMR PDAC resulted strongly associated with medullary and mucinous/colloid histology (p less then 0.01) and with a KRAS/TP53 wild-type molecular background (p less then 0.01), with more common JAK genes mutations. Data on survival are still unclear. CONCLUSION PDAC showing typical medullary or mucinous/colloid histology should be routinely examined for MSI/dMMR status using specific tests (immunohistochemistry, followed by MSI-PCR in cases with doubtful results). Next-generation sequencing (NGS) should be adopted either where there is limited tissue or as part of NGS tumour profiling in the context of precision oncology, acknowledging that conventional histology of PDAC may rarely harbour MSI/dMMR. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.While airway clearance techniques (ACTs) are recommended for individuals with bronchiectasis, many trials have demonstrated inconsistent benefits or failed to reach their primary outcome. This review determined the most common clinical and patient-reported outcome measures used to evaluate the efficacy of ACTs in bronchiectasis. A literature search of five databases using relevant keywords and filtering for studies published in English, up until the end of August 2019, was completed. Studies included randomised controlled trials, using crossover or any other trial design, and abstracts. Studies were included where the control was placebo, no intervention, standard care, usual care or an active comparator. Adults with bronchiectasis not related to cystic fibrosis were included. Extracted data comprised study authors, design, duration, intervention, outcome measures and results. The search identified 27 published studies and one abstract. The most common clinical outcome measures were sputum volume (n=23), lung function (n=17) and pulse oximetry (n=9). The most common patient-reported outcomes were health-related quality of life (measured with St George's Respiratory Questionnaire, n=4), cough-related quality of life (measured with Leicester Cough Questionnaire, n=4) and dyspnoea (measured with Borg/modified Borg scale, n=8). Sputum volume, lung function, dyspnoea and health- and cough-related quality of life appear to be the most common clinical and patient-reported measures of airway clearance treatment efficacy. Copyright ©ERS 2020.Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article. Copyright ©ERS 2020.Physician-led thoracic ultrasound (TUS) has substantially changed how respiratory disorders, and in particular pleural diseases, are managed. The use of TUS as a point-of-care test enables the respiratory physician to quickly and accurately diagnose pleural pathology and ensure safe access to the pleural space during thoracentesis or chest drain insertion. Competence in performing TUS is now an obligatory part of respiratory speciality training programmes in different parts of the world. Pleural physicians with higher levels of competence routinely use TUS during the planning and execution of more sophisticated diagnostic and therapeutic interventions, such as core needle pleural biopsies, image-guided drain insertion and medical thoracoscopy. Current research is gauging the potential of TUS in predicting the outcome of different pleural interventions and how it can aid in tailoring the optimum treatment according to different TUS-based parameters. Copyright ©ERS 2020.