Fyhnkent9754
In this study, the odour thresholds (OT) and atmospheric lifetimes (AL) were compared for a suite of volatile organic compounds. It was found that odour threshold, as determined by the triangle bag method, correlated surprisingly well with atmospheric lifetime for a given chemical family. Molecules with short atmospheric lifetimes with respect to the primary atmospheric oxidant OH tend to be more sensitively detected by the human nose. Overall the correlation of odour threshold with atmospheric lifetime was better than with mass and vapour pressure. Several outliers from the correlations for particular chemical families were examined in detail. For example, diacetyl was an outlier in the ketone dataset that fitted the trend when its more important photolysis lifetime was included; and similarly, the relatively low odour threshold of carbonyl sulfide (OCS) was interpreted in terms of uptake by vegetation. The OT/AL relationship suggests that OH rate constants can be used as a first-order estimate for odour thresholds (and vice versa). We speculate that the nose's high sensitivity to chemicals that are reactive in the air is likely an evolved rather than a learned condition. This is based on the lack of dependence on ozone in the aliphatics, that the anthropogenically emitted aromatic compounds had the worst correlation, and that OCS had a much lower than predicted OT. Finally, we use the OT/AL relationships derived to predict odour thresholds and rate constants that have not yet been determined in order to provide a test to this hypothesis. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.The study of human chemical communication benefits from comparative perspectives that relate humans, conceptually and empirically, to other primates. All major primate groups rely on intraspecific chemosignals, but strepsirrhines present the greatest diversity and specialization, providing a rich framework for examining design, delivery and perception. Strepsirrhines actively scent mark, possess a functional vomeronasal organ, investigate scents via olfactory and gustatory means, and are exquisitely sensitive to chemically encoded messages. Variation in delivery, scent mixing and multimodality alters signal detection, longevity and intended audience. Based on an integrative, 19-species review, the main scent source used (excretory versus glandular) differentiates nocturnal from diurnal or cathemeral species, reflecting differing socioecological demands and evolutionary trajectories. Condition-dependent signals reflect immutable (species, sex, identity, genetic diversity, immunity and kinship) and transient (health, social status, reproductive state and breeding history) traits, consistent with socio-reproductive functions. Sex reversals in glandular elaboration, marking rates or chemical richness in female-dominant species implicate sexual selection of olfactory ornaments in both sexes. Whereas some compounds may be endogenously produced and modified (e.g. via hormones), microbial analyses of different odorants support the fermentation hypothesis of bacterial contribution. The intimate contexts of information transfer and varied functions provide important parallels applicable to olfactory communication in humans. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.The impact of the olfactory sense is regularly apparent across development. The fetus is bathed in amniotic fluid (AF) that conveys the mother's chemical ecology. Transnatal olfactory continuity between the odours of AF and milk assists in the transition to nursing. At the same time, odours emanating from the mammary areas provoke appetitive responses in newborns. Odours experienced from the mother's diet during breastfeeding, and from practices such as pre-mastication, may assist in the dietary transition at weaning. In parallel, infants are attracted to and recognize their mother's odours; later, children are able to recognize other kin and peers based on their odours. Familiar odours, such as those of the mother, regulate the child's emotions, and scaffold perception and learning through non-olfactory senses. During juvenility and adolescence, individuals become more sensitive to some bodily odours, while the timing of adolescence itself has been speculated to draw from the chemical ecology of the family unit. Odours learnt early in life and within the family niche continue to influence preferences as mate choice becomes relevant. Olfaction thus appears significant in turning on, sustaining and, in cases when mother odour is altered, disturbing adaptive reciprocity between offspring and carer during the multiple transitions of development between birth and adolescence. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.For humans, like other social animals, behaviour acts as a first line of defence against pathogens. A key component is the ability to detect subtle perceptual cues of sick conspecifics. The present study assessed the effects of endotoxin-induced olfactory and visual sickness cues on liking, as well as potential involved mechanisms. Seventy-seven participants were exposed to sick and healthy facial pictures and body odours from the same individual in a 2 × 2 factorial design while disgust-related facial electromyography (EMG) was recorded. Following exposure, participants rated their liking of the person presented. In another session, participants also answered questionnaires on perceived vulnerability to disease, disgust sensitivity and health anxiety. Lower ratings of liking were linked to both facial and body odour disease cues as main effects. Disgust, as measured by EMG, did not seem to be the mediating mechanism, but participants who perceived themselves as more prone to disgust, and as more vulnerable to disease, liked presented persons less irrespectively of their health status. Concluding, olfactory and visual sickness cues that appear already a few hours after the experimental induction of systemic inflammation have implications for human sociality and may as such be a part of a behavioural defence against disease. Lys05 clinical trial This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.