Mcphersondonahue3897
In recent years, examining the determinants of health behaviors on a multi-country level remains limited. Therefore, the purpose of this study is to explore the key factors that may enhance the adoption of health-protective behaviors during the COVID-19 pandemic in Morocco and India. A theoretical framework derived from the health belief model (HBM) was used for this research. Data was collected from a sample of 444 adult individuals split across Morocco (n = 215) and India (n = 229). Data analysis was carried out using two-stage multiple-analytic techniques. First, structural equation modeling (SEM) was employed to test the hypothesized relationships. Second, an artificial neural network (ANN) model was employed to rank the significant independent variables obtained from SEM analysis. The results of SEM showed that perceived benefit is the key predictor of the protective behavior in Morocco, followed by self-efficacy, and then perceived severity. By contrast, ANN analysis showed that perceived severity was the most vital factor for predicting the protective behavior in Morocco, followed by perceived benefits, and then self-efficacy. For the Indian sample, both SEM analysis and the ANN model revealed that the impact of perceived susceptibility on the adoption of the protective measure is stronger than that of cues to action. Theoretical contributions and managerial implications are also discussed toward the end.The application of land use regression (LUR) modeling for estimating air pollution exposure has been used only rarely in sub-Saharan Africa (SSA). This is generally due to a lack of air quality monitoring networks in the region. Low cost air quality sensors developed locally in sub-Saharan Africa presents a sustainable operating mechanism that may help generate the air monitoring data needed for exposure estimation of air pollution with LUR models. The primary objective of our study is to investigate whether a network of locally developed low-cost air quality sensors can be used in LUR modeling for accurately predicting monthly ambient fine particulate matter (PM2.5) air pollution in urban areas of central and eastern Uganda. Secondarily, we aimed to explore whether the application of machine learning (ML) can improve LUR predictions compared to ordinary least squares (OLS) regression. We used data for the entire year of 2020 from a network of 23 PM2.5 low-cost sensors located in urban municipalities of easteing and improving air quality monitoring in resource-constrained settings of sub-Saharan Africa. These low-cost sensors, in conjunction with non-parametric ML algorithms, may provide a rapid path forward for PM2.5 exposure assessment and to spur air pollution epidemiology research in the region.Lung cancer is the leading cause of cancer deaths in the world. Non-small cell lung cancer (NSCLC), with poor prognosis and resistance to chemoradiotherapy, is the most common histological type of lung cancer. Therefore, it is necessary to develop new and more effective treatment strategy for NSCLC. click here Nur77, an orphan member of the nuclear receptor superfamily, induces apoptosis in cancer cells including NSCLC cells, by high expression and translocation to mitochondria. Small molecules trigger expression and mitochondrial localization of Nur77 may be an ideal anti-cancer drug candidate. Here, we report malayoside, a cardiac glycoside in the extract of Antiaris toxicaria Lesch., had different sensitivities to NSCLC cells. Malayoside induced apoptosis in NCI-H460 cells. Meanwhile, malayoside induced Nur77 expression and mitochondrial localization, and its induction of apoptosis was Nur77-dependent. To investigate the molecular mechanism of malayoside inducing Nur77 and apoptosis, we found that malayoside activated MAPK signaling pathway, including both ERK and p38 phosphorylation. The suppression of MAPK signaling activation inhibited the expression of Nur77 and apoptosis induced by malayoside. Our studies in nude mice showed that malayside potently inhibited the growth of tumor cells in vivo. Furthermore, the anti-cancer effect of malayosidwas in vivo was also related to the elevated expression of Nur77, p-ERK, and p-p38 proteins. Our results suggest that malayoside possesses an anti-NSCLC activity in vitro and in vivo mainly via activation of MAPK-Nur77 signaling pathway, indicating that malayoside is a promising chemotherapeutic candidate for NSCLC.MET, the receptor of hepatocyte growth factor (HGF), is a driving factor in renal cell carcinoma (RCC) and also a proven drug target for cancer treatment. To improve the activity and to investigate the mechanisms of action of Apigenin (APG), novel derivatives of APG with improved properties were synthesized and their activities against Caki-1 human renal cancer cell line were evaluated. It was found that compound 15e exhibited excellent potency against the growth of multiple RCC cell lines including Caki-1, Caki-2 and ACHN and is superior to APG and Crizotinib. Subsequent investigations demonstrated that compound 15e can inhibit Caki-1 cell proliferation, migration and invasion. Mechanistically, 15e directly targeted the MET kinase domain, decreased its auto-phosphorylation at Y1234/Y1235 and inhibited its kinase activity and downstream signaling. Importantly, 15e had inhibitory activity against mutant MET V1238I and Y1248H which were resistant to approved MET inhibitors Cabozantinib, Crizotinib or Capmatinib. In vivo tumor graft study confirmed that 15e repressed RCC growth through inhibition of MET activation. These results indicate that compound 15e has the potential to be developed as a treatment for RCC, and especially against drug-resistant MET mutations.Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression.