Selfclausen4667

Z Iurium Wiki

Verze z 2. 1. 2025, 17:42, kterou vytvořil Selfclausen4667 (diskuse | příspěvky) (Založena nová stránka s textem „Recent sequencing of numerous fungal species revealed large repertoires of putative biotechnologically relevant genes and secondary metabolite gene cluster…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Recent sequencing of numerous fungal species revealed large repertoires of putative biotechnologically relevant genes and secondary metabolite gene clusters. However, often the commercial potential of these species is impeded by difficulties to predict host physiological and metabolic compatibility with a given product, and lack of adequate genetic tools. Consequently, most heterologous production is performed in standard hosts where genetic tools and experience are in place. However, these species may not be suitable for all products. To increase chances of successful heterologous production, we have created a flexible platform, DIVERSIFY, for multispecies heterologous gene expression. This reduces the workload to construction of a single gene expression cassette, used to transform all DIVERSIFY strains in order to identify the optimal cell factory host. As proof of principle of the DIVERSIFY concept, we present the first version of our platform, DIVERSIFY 1.0, which we have successfully used for the production of three proteins and a metabolite in four different Aspergilli species, and for the identification of the best producer for each of the products. Moreover, we show that DIVERSIFY 1.0 is compatible with marker-free gene targeting induced by the CRISPR nucleases Cas9 and MAD7.Platinum diselenide (PtSe2) is a group-10 two-dimensional (2D) transition metal dichalcogenide that exhibits the most prominent atomic-layer-dependent electronic behavior of "semiconductor-to-semimetal" transition when going from monolayer to bulk form. This work demonstrates an efficient photoelectrochemical (PEC) conversion for direct solar-to-hydrogen (H2) production based on 2D layered PtSe2/Si heterojunction photocathodes. By systematically controlling the number of atomic layers of wafer-scale 2D PtSe2 films through chemical vapor deposition (CVD), the interfacial band alignments at the 2D layered PtSe2/Si heterojunctions can be appropriately engineered. buy UMI-77 The 2D PtSe2/p-Si heterojunction photocathode consisting of a PtSe2 thin film with a thickness of 2.2 nm (or 3 atomic layers) exhibits the optimized band alignment and delivers the best PEC performance for hydrogen production with a photocurrent density of -32.4 mA cm-2 at 0 V and an onset potential of 1 mA cm-2 at 0.29 V versus a reversible hydrogen electrode (RHE) after post-treatment. The wafer-scale atomic-layer controlled band engineering of 2D PtSe2 thin-film catalysts integrated with the Si light absorber provides an effective way in the renewable energy application for direct solar-to-hydrogen production.Polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) are photoactive environmental pollutants that can contaminate aquatic environments. Aqueous-phase interactions between PAHs and TiO2-NPs are of interest due to their emerging environmental relevance, particularly with the deliberate application of TiO2-NPs to remediate pollution events (e.g., oil spills). Our objective was to investigate anthracene (ANT) and phenanthrene (PHE) photoproduct formation and transformation following ultraviolet A (UVA) irradiation in the presence and absence of TiO2-NPs. ANT and PHE solutions were prepared alone or in combination with TiO2-NPs, UVA-irradiated, and either exposed to larval zebrafish or collected for chemical analyses of diverse hydroxylated PAHs (OHPAHs) and oxygenated PAHs (OPAHs). The expression profiles of genes encoding for enzymes involved in PAH metabolism showed PAH-specific and time-dependent inductions that demonstrated changes in PAH and photoproduct bioavailability in the presence of TiO2-NPs. Chemical analyses of PAH/NP solutions in the absence of zebrafish larvae identified diverse photoproducts of differing size and ring arrangements, which suggested photodissociation, recombination, and ring re-arrangements of PAHs occurred either during or following UVA irradiation. Both ANT and PHE solutions showed heightened oxidative potential following irradiation, but TiO2-NP-related increases in oxidative potential were PAH-specific. The exploitation of multiple analytical methods provided novel insights into distinct PAH photoactivity, TiO2-NP influence on photoproduct formation in a PAH-specific manner, and the significant role time plays in photochemical processes.One of the objectives within the medicinal chemistry discipline is to design tissue targeting molecules. The objective of tissue specificity can be either to gain drug access to the compartment of interest (e.g., the CNS) for Neuroscience targets or to restrict drug access to the CNS for all other therapeutic areas. Both neuroscience and non-neuroscience therapeutic areas have struggled to quantitatively estimate brain penetration or the lack thereof with compounds that are substrates of efflux transport proteins such as P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP) that are key components of the blood-brain barrier (BBB). It has been well established that drug candidates with high efflux ratios (ER) of these transporters have poor penetration into brain tissue. In the current work, we outline a parallel analysis to previously published models for the prediction of brain penetration that utilize an alternate MDR1-MDCK cell line as a better predictor of brain penetration and whether a correlation between in vitro, rodent data, non-human primate (NHP), and human in vivo brain penetration data could be established. Analysis of structural and physicochemical properties in conjunction with in vitro parameters and preclinical in vivo data has been highlighted in this manuscript as a continuation of the previously published work.An effective and reversible tuning of the intensity of surface-enhanced Raman scattering (SERS) of nonelectroactive molecules at nonresonance conditions by electrochemical means has been developed on plasmonic molecular nanojunctions formed between Au@Ag core-shell nanoparticles (NPs) and a gold nanoelectrode (AuNE) modified with a self-assembled monolayer. The Au@Ag nanoparticle on nanoelectrode (NPoNE) structures are formed in situ by the electrochemical deposition of Ag on AuNPs adsorbed on the AuNE and can be monitored by both the electrochemical current and SERS signals. Instead of introducing molecular changes by the applied electrode potential, the highly effective SERS intensity tuning was achieved by the chemical composition transformation of the ultrathin Ag shell from metallic Ag to insulating AgCl. The electrode potential-induced electromagnetic enhancement (EME) tuning in the Au@Ag NPoNE structure has been confirmed by finite-difference time-domain simulations. Moreover, the specific Raman band associated with Ag-molecule interaction can also be tuned by the electrode potential.

Autoři článku: Selfclausen4667 (Neergaard Salomonsen)