Crowleygentry5042

Z Iurium Wiki

Verze z 2. 1. 2025, 17:24, kterou vytvořil Crowleygentry5042 (diskuse | příspěvky) (Založena nová stránka s textem „Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.In this work, we report, for the first time, the construction of a label-free electrochemical immunosensor for highly sensitive detection of a new lung cancer biomarker, GM2 activator protein (GM2AP). A polyethyleneimine-coated gold nanoparticle (PEI-AuNP) and phosphomolybdic acid (PMA) modified electrode is developed as a novel redox platform for GM2AP detection. A PEI-AuNP film-modified screen-printed carbon electrode, as a signal amplifier support, was successfully fabricated for the adsorption of PMA redox molecules and is used for signal amplification. Under the optimized conditions, GM2AP detection is based on a decrease in the current response of PMA redox probes proportionally relative to an amount of the immunocomplex. Our sensor exhibits two linear ranges of 0.005-25 and 25-400 ng mL-1 with a limit of detection (LOD) of 0.51 pg mL-1. The immunosensor is successfully applied for the determination of GM2AP in both human urine and serum samples. The proposed sensor offers the advantages of simple fabrication, low cost, rapid analysis, satisfactory stability, high selectivity and sensitivity, and good reproducibility. The LOD of the biosensor is approximately 2863 and 1804 fold lower than the clinically relevant levels in human urine and serum, respectively. Our strategy can be used as an alternative non-invasive clinical analysis method for lung cancer screening.Biosensing is of vital importance for advancing public health through monitoring abnormalities in biological systems, which may be potentially associated with certain body dysfunctions. A wide range of luminescent materials have been actively pursued in the fabrication of biosensing platforms, particularly ones that can function in complex biological fluids with high selectivity and sensitivity. Recently, metal-organic frameworks (MOFs) have experienced rapid growth due to their tunable structures, large surface area, and being prone to surface engineering, etc. These virtues endow MOF materials with immense feasibility in the target-oriented construction of sensing platforms for specific applications. In this review, we extrapolated six sensing mechanisms for MOF-based photoluminescent biosensing platforms, including photoelectron transfer (PET), resonance energy transfer (RET), competition absorption (CA), structural transformation (ST), chemical conversion (CC), and quencher detachment (QD). Accordingly, recent progress of MOF-based materials in photoluminescence sensing of biomolecules, biomarkers, drugs, and toxins was highlighted. The objective of this review is to provide readers with an extensive overview of the design and synthesis of MOF materials for photoluminescence biosensing. The challenges and outlook are briefly discussed at the end.Developing dopant-free hole-transporting materials (HTMs) is very important for improving the stability and increasing the power conversion efficiency of perovskite solar cells (PSCs). Herein, nine boron-nitrogen substituted tetrathienonaphthalene (BN-TTN) derivatives as hole-transporting materials (HTMs) were investigated using theoretical calculations combined with the Marcus theory and the Einstein relation. The results showed that the introduction of a boron-nitrogen group in tetrathienonaphthalene leads to a deep HOMO level, good thermal stability, and enhanced hydrophobicity. Importantly, most BN-TTN molecules possess larger hole mobility due to a broader distribution of the frontier molecular orbitals of the dimer. The BN-TTN core that matches with the size of the perovskite interface also increases the interfacial interaction and hole transfer from the perovskite layer to the HTM layer. The present findings can highlight the potential of BN-TTN core-based HTMs for efficient PSCs.Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.Fabrication of plasmonic nanostructures in a precise and reliable manner is a topic of huge interest because their structural details significantly affect their plasmonic properties. Herein, we present nanotip indentation lithography (NTIL) based on atomic force microscopy (AFM) indentation for the patterning of plasmonic nanostructures with precisely controlled size and shape. The size of the nanostructures is controlled by varying the indentation force of AFM tips into the mask polymer; while their shapes are determined to be nanodisks (NDs) or nanotriangles (NTs) depending on the shapes of the AFM tip apex. The localized surface plasmon resonance of the NDs is tailored to cover most of the visible-wavelength regime by controlling their size. The NTs show distinct polarization-dependent plasmon modes consistent with full-wave optical simulations. selleck chemicals llc For the demonstration of the light-matter interaction control capability of NTIL nanostructures, we show that photoluminescence enhancement from MoS2 layers can be deliberately controlled by tuning the size of the nanostructures.

Autoři článku: Crowleygentry5042 (Mahmoud Morales)