Nicolaisenwoodward7352

Z Iurium Wiki

Verze z 2. 1. 2025, 16:36, kterou vytvořil Nicolaisenwoodward7352 (diskuse | příspěvky) (Založena nová stránka s textem „Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic targets. Despite the widely explor…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic targets. Despite the widely explored capabilities of this strategy, intracellular delivery is hindered by a lack of carriers that have high stability, low toxicity and high transfection efficiency. Here we propose a layer by layer (LBL) self-assembly method to fabricate chitosan-coated gold nanoparticles (CS-AuNPs) as a more stable and efficient siRNA delivery system. Direct reduction of HAuCl4 in the presence of chitosan led to the formation of positively charged CS-AuNPs, which were subsequently modified with a layer of siRNA cargo molecules and a final chitosan layer to protect the siRNA and to have a net positive charge for good interaction with cells. selleck products Cytotoxicity, uptake, and downregulation of enhanced Green Fluorescent Protein (eGFP) in H1299-eGFP lung epithelial cells indicated that LBL-CS-AuNPs provided excellent protection of siRNA against enzymatic degradation, ensured good uptake in cells by endocytosis, facilitated endosomal escape of siRNA, and improved the overall silencing effect in comparison with commercial transfection reagents Lipofectamine and jetPEI®. Therefore, this work shows that LBL assembled CS-AuNPs are promising nanocarriers for enhanced intracellular siRNA delivery and silencing.Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16-18%, flexural strength by ~9-12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.Increased breast density decreases mammographic sensitivity due to masking of cancers by dense tissue. Tamoxifen exposure reduces mammographic density and, therefore, should improve screening sensitivity. We modelled how low-dose tamoxifen exposure could be used to increase mammographic sensitivity. Mammographic sensitivity was calculated using the KARMA prospective screening cohort. Two models were fitted to estimate screening sensitivity and detected tumor size based on baseline mammographic density. BI-RADS-dependent sensitivity was estimated. The results of the 2.5 mg tamoxifen arm of the KARISMA trial were used to define expected changes in mammographic density after six months exposure and to predict changes in mammographic screening sensitivity and detected tumor size. Rates of interval cancers and detection of invasive tumors were estimated for women with mammographic density relative decreases by 10-50%. In all, 517 cancers in premenopausal women were diagnosed in KARMA 287 (56%) screen-detected and 230 (44%) interval cancers. Screening sensitivities prior to tamoxifen, were 76%, 69%, 53%, and 46% for BI-RADS density categories A, B, C, and D, respectively. After exposure to tamoxifen, modelled screening sensitivities were estimated to increase by 0% (p = 0.35), 2% (p 20 mm at detection by 4% (p less then 0.01). Low-dose tamoxifen has the potential to increase mammographic screening sensitivity and thereby reduce the proportion of interval cancers and larger screen-detected cancers.Liposome-based drug delivery systems have allowed for better drug tolerability and longer circulation times but are often optimized for a single agent due to the inherent difficulty of co-encapsulating two drugs with differing chemical profiles. Here, we design and test a prodrug based on a ribosylated nucleoside form of 5-fluorouracil, 5-fluorouridine (5FUR), with the final purpose of co-encapsulation with doxorubicin (DOX) in liposomes. To improve the loading of 5FUR, we developed two 5FUR prodrugs that involved the conjugation of either one or three moieties of tryptophan (W) known respectively as, 5FUR-W and 5FUR-W3. 5FUR-W demonstrated greater chemical stability than 5FUR-W3 and allowed for improved loading with fewer possible byproducts from tryptophan hydrolysis. Varied drug ratios of 5FUR-W DOX were encapsulated for in vivo testing in the highly aggressive 4T1 murine breast cancer model. A liposomal molar ratio of 2.5 5FUR-W DOX achieved a 62.6% reduction in tumor size compared to the untreated control group and a 33% reduction compared to clinical doxorubicin liposomes in a proof-of-concept study to demonstrate the viability of the co-encapsulated liposomes. We believe that the new prodrug 5FUR-W demonstrates a prodrug design with clinical translatability by reducing the number of byproducts produced by the hydrolysis of tryptophan, while also allowing for loading flexibility.

Autoři článku: Nicolaisenwoodward7352 (Jimenez Fleming)