Alstruphalberg8937
28 with correction time 100 ms. Furthermore, both spatial modes and the light intensity distribution can be well compensated in different atmospheric turbulence.In this study, we propose a second-order moiré method by performing digital sampling at two stages to realize high-accuracy deformation measurement in a wide field of view, where a grid image is recorded at a low magnification. Simulations have verified that this method has high strain measurement accuracy when the grid pitch is close to or even smaller than two pixels for both parallel and oblique grids with random noise. As an application, the two-dimensional microscale strain distributions of a carbon fiber reinforced plastic specimen when the grid pitch was about 2.1 pixels were presented. Shear strain concentration was detected before an interlaminar crack emerged, and tensile strain concentration was found prior to the occurrence of a transverse crack. The proposed method makes the two-step phase-shifting technique achieved indirectly, not only enlarging the field of view, but also maintaining the measurement accuracy.Nonlocal wavelength-to-time mapping between frequency-entangled photon pairs generated with the process of spontaneous parametric down-conversion is theoretically analyzed and experimentally demonstrated. The spectral filtering pattern experienced by one photon in the photon pair will be non-locally mapped into the time domain when the other photon propagates inside a dispersion-compensation fiber with large group velocity dispersion. Our work, for the first time, points out that the spectral bandwidth of the pump laser will become the dominated factor preventing the improvement of the spectral resolution when the involved group velocity dispersion is large enough, which provides an excellent tool for characterizing the resolution of a nonlocal wavelength-to-time mapping for further quantum information applications.Quantum emitters in hexagonal boron nitride (hBN) have attracted significant interest due to their bright and narrowband photon emission even at room temperature. The wide-bandgap two-dimensional material incorporates crystal defects of yet-unknown configuration, introducing discrete energy levels with radiative transition frequencies in the visible spectral range. The commonly observed high brightness together with the moderate fluorescence lifetime indicates a high quantum efficiency, but the exact dynamics and the underlying energy level structure remain elusive. In this study we present a systematic and detailed analysis of the photon statistics recorded for several individual emitters. We extract the individual decay rates by modeling the second-order correlation functions using a set of rate equations based on an energy level scheme involving long-lived states. Our analysis clearly indicates excitation-power-dependent non-radiative couplings to at least two metastable levels and confirms a near unity quantum efficiency.In this paper, the propagation of Temporal Coherence Grating (TCG) pulse trains in a dispersive medium with a chirp is investigated for the first time. The two-time mutual coherence function of the TCG pulse trains propagating through extended dispersive medium specified by temporal ABCD matrix is derived and the evolution of their mean intensity and temporal degree of coherence (DOC) is explored. Ipatasertib It is shown that the distribution of the mean intensity can be modulated freely by the number of grating lobes N, grating constant a, pulse duration T0, power distributions vn, group-velocity dispersion coefficient β2 and the medium chirper s. Upon dispersive-medium propagation, the single pulse splits into N+1 subpulses with the same or different peak intensities which depend on power distributions vn. What's more, during the propagation the pulse self-focusing occurs being the chirp-induced non-linear phenomenon. And the distribution of temporal DOC will degenerate into Gaussian form from initial periodic coherence distribution with increasing propagation distance z or adjusting incident pulse parameters and medium dispersion. The physical explanation and numerical illustrations relating to the pulse behavior are included.The exponential growth of photonic quantum technologies is driving the demand for tools to measure the quality of their information carriers. One of the most prominent is stimulated emission tomography (SET), which uses classical coherent fields to measure the joint spectral amplitude (JSA) of photon pairs with high speed and resolution. While the modulus of the JSA can be directly addressed from a single intensity measurement, the retrieval of the joint spectral phase (JSP) is far more challenging and received minor attention. However, a wide class of spontaneous sources of technological relevance, as chip integrated micro-resonators, have a JSP with a rich structure that carries correlations hidden in the intensity domain. Here, using a compact and reconfigurable silicon photonic chip, the complex JSA of a micro-ring resonator photon pair source is measured for the first time. The photonic circuit coherently excites the ring and a reference waveguide, and the interferogram formed by their stimulated fields is used to map the ring JSP through a novel phase reconstruction technique. This tool complements the traditionally bulky and sophisticated methods implemented so far, simultaneously minimizing the set of required resources.Based on the scattering formalism and transfer matrix method, we calculate the Casimir energy in multilayer system containing general anisotropic media and apply the result to the anisotropic saturated ferrite three-layer structure. We investigate the stable equilibrium resulting from repulsive Casimir force in the three-layer anisotropic ferrite structure, focusing on the control of the equilibrium position by means of the external magnetic field, which might provide possibility for Casimir actuation under external manipulation. Furthermore, we propose a Casimir torque switch where the torque acting on the intermediate layer can be switched on and off by tuning the relative orientation between the external magnetic fields applied on the outer ferrite layers. The relation between the feature of torque-off/torque-on state and the weak/strong anisotropy of the ferrite is studied. These findings suggest potential application of Casimir torque in, e.g., cooling the rotation of a thin slab in micromachining process via external magnetic field.