Burtjohansen3590
Interactive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered a cross-feeding coculture between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excretes essential nitrogen as NH4+ to E. coli, while E. coli excretes essential carbon as fermentation products to R. palustris. Here, we sought to determine whether a reciprocal cross-feeding relationship would evolve spontaneously in cocultures with wild-type R. palustris, which is not known to excrete NH4+. Indeed, we observed the emergence of NH4+ cross-feeding, but driven by adaptation of E. coli alone. A missense mutation in E. coli NtrC, a regulator of nitrogen scavenging, resulted in constitutive activation of an NH4+ transporter. This activity likely allowed E. coli to subsist on the small amount of leaked NH4+ and better reciprocate through elevated excretion of fermentation products from a larger E. coli population. Our results indicate that enhanced nutrient uptake by recipients, rather than increased excretion by producers, is an underappreciated yet possibly prevalent mechanism by which cross-feeding can emerge.Waste biomass from forestry and wood processing industries is a source to obtain fine chemicals, and its processing is a good example of circular economy, but it generates secondary environmental impacts. The main objective of this study was to analyse the environmental performances of laboratory scale processes for polyphenols extraction from spruce bark by means of life cycle assessment (LCA) and to simulate and evaluate the scale-up possibilities of the most favourable alternative. The assessed extraction processes were a classic Soxhlet extraction using ethanol as solvent (SE), a high-temperature extraction in 1% NaOH solution (NaOH-SLE) and an ultrasound assisted extraction process (UAE). The functional unit was 1 mg of extracted polyphenols, measured as gallic acid equivalents (mg GAE)/g spruce bark. The life cycle inventory has included specific laboratory scale operations and extraction processes (infrastructure and transport processes were not considered). Life cycle impact assessment was performed with ReCipe 2016 at midpoint. For all extraction processes, the environmental profiles were dominated by the electricity use for heating and this has generated the highest impacts in most of the impact categories, followed by the production and use of ethanol as solvent. For the ultrasound assisted extraction, a scale-up scenario has proven that by raising capacity to a 30 L extraction vessel and by changing the heating source to a biomass-fired boiler, environmental impacts may be greatly diminished. The paper discusses also the uncertainty of lab-scale generated data for LCA. A sensitivity analysis has proven that for this case, the energy efficiency of different lab-scale equipment induce acceptable degrees of uncertainty for the LCA results.A novel marine actinomycete strain designated ICN19T was isolated from the subtidal sediment of Chinnamuttam coast of Kanyakumari, India and subjected to polyphasic taxonomic analysis. Neighbour-joining tree based on 16S rRNA gene sequences of validly described type strains had revealed the strain ICN19T formed distinct cluster with Streptomyces wuyuanensis CGMCC 4.7042T, Streptomyces tirandamycinicus HNM0039T and Streptomyces spongiicola HNM0071T. Morphological, physiological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces. The strain possessed LL-diaminopimelic acid as the diagnostic diamino acid. The predominant isoprenoid quinone was identified as MK-9(H8) (70%), MK-9(H6) (20%) and MK-9(H2) (2%), with the major cellular fatty acids (>10%) being anteiso-C150, C160 and iso-C160. The main polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides and three unidentified phospholipids. The dendrogram generated on the basis of MALDI-TOF mass spectra supports the strain differentiated from its neigbours. The genome sequence of strain ICN19T was 9,010,366 bp in size with a total of 7420 protein-coding genes and 98 RNA genes. The genomic G+C content of the novel strain was 71.27 mol%. The DNA-DNA relatedness between strain ICN19T and the reference strains with S. wuyuanensis CGMCC 4.7042T, S. tirandamycinicus HNM0039T and S. spongiicola HNM0071T were 42.8%, 39.5% and 38%, respectively. Based on differences in physiological, biochemical, chemotaxonomic differences and whole-genome characteristics the isolated strain represents a novel species of the genus Streptomyces, for which the name Streptomyces marianii sp. nov. is proposed. Type strain is ICN19T (=MCC 3599T = KCTC 39749T).IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.Being incident and polarization angle insensitive are crucial characteristics of metamaterial perfect absorbers due to the variety of incident signals. In the case of incident angles insensitivity, facing transverse electric (TE) and transverse magnetic (TM) waves affect the absorption ratio significantly. In this scientific report, a crescent shape resonator has been introduced that provides over 99% absorption ratio for all polarization angles, as well as 70% and 93% efficiencies for different incident angles up to [Formula see text] for TE and TM polarized waves, respectively. Moreover, the insensitivity for TE and TM modes can be adjusted due to the semi-symmetric structure. FSEN1 cost By adjusting the structure parameters, the absorption ratio for TE and TM waves at [Formula see text] has been increased to 83% and 97%, respectively. This structure has been designed to operate at 5 GHz spectrum to absorb undesired signals generated due to the growing adoption of Wi-Fi networks. Finally, the proposed absorber has been fabricated in a [Formula see text] array structure on FR-4 substrate.