Duusmunch7595
Finally, a brief perspective is mentioned indicating the future prospects of these porous composites. Though, the scope of this review is limited to porous metal oxide composites, the information presented here can be helpful for any researchers working in other emerging fields. In recent years, environmental problems, consumer health concerns, and economic limitations associated with synthetic plastics have led to the application of renewable, biodegradable, and edible resources for developing food packaging. Edible packaging can be important in maintaining the food quality and preventing the microbial and chemical spoilage of foods. Several seeds can produce 'seed-based mucilage' with different techno-functional properties for application in various food products. In the field of packaging, these mucilages can be extruded into coatings and films and improve the barrier properties against the transfer of oxygen and moisture. Likewise, bioactive ingredients can also be incorporated into these mucilages which will extend the shelf life of food products. This study gives an overview of various seed mucilages, their production and characteristics of the films/coatings prepared with them for successful applications in different food products. In this study, a novel and environmental strategy inspired by mussels is reported for the construction of a high-performance water-in-oil water/pMDI adhesive with strongly adherent catechol groups. It is found that the design of the biomimetic water-in-oil emulsion significantly increases the apparent viscosity and storage stability of the adhesive, which in turn influences the handling and bonding performance in practical application. Additionally, although the biomimetic emulsion design consumes part of active isocyanate groups in the pMDI, the contained catechol can serve as a reactive platform to induce secondary crosslinking interactions with the wood substrate to further improve the mechanical and adhesion performances of the modified pMDI adhesives. Consequently, compared to the pristine pMDI sample, the wet shear strength of the biomimetic water-in-oil water/pMDI adhesive is increased by 129.7 %, exhibiting that the obvious optimization of adhesion and water resistance properties. Overall, our findings provide new insights into exploiting novel and superior wood adhesives, and the constructed high-performance adhesive presents potential applications for sustainable wood products. Benzophenone-type ultraviolet filters (BPs) have recently been recognized as emerging organic contaminants. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to environmentally relevant levels (0.01-1000 μg L-1) of benzophenone-1 (BP-1) and benzophenone-3 (BP-3) for seven days. A battery of tested endpoints associated with photosynthetic pigments and oxidative stress was employed for a better understanding of the mode of action. The tested cyanobacterium could uptake the two BPs (27.4-54.9%) from culture media. The two BPs were able to inhibit the production of chlorophyll a (chl-a) and promote the accumulation of carotenoids, leading to unaffected chl-a autofluorescence. Slightly increased malondialdehyde (MDA) contents suggested that BP-1 and BP-3 caused moderate oxidative stress. BP-1 stimulated the activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione S-transferase (GST) in M. aeruginosa while BP-3 increased the activities of SOD, GST, and glutathione (GSH), showing a concentration- and time-dependent relationship. The activities of other biomarkers, such as catalase (CAT) and glutathione peroxidase (GPx) fluctuated depending on exposure time and concentration. The overall results suggested that the two BPs can trigger moderate oxidative stress in M. aeruginosa and the tested cyanobacterium was capable of alleviating stress by different mechanisms. Red mud samples were used to catalyse in-situ co-pyrolysis of pinewood and low-density polyethylene for the production of high-quality bio-oil. selleck compound The sodium cation in the crude red-mud was exchanged with barium and calcium cations and further tested to explore their role in oil upgrading. The relationship between red-mud catalytic activity and its constituents was explored using synthetic sodalite. The red-mud catalysts exhibited a considerable aromatisation capacity compared to the thermal co-pyrolysis, as the selectivity towards monocyclic aromatic hydrocarbons increased from 12.7 to 19.6%, respectively. Long-chain molecules cracking was more significant in synthetic sodalite associated with their acidic active sites. The addition of barium and calcium cations to the red-mud largely improved oxygen elimination as a result of the enhanced catalyst basicity. In contrast, the aromatisation ability of red-mud significantly impeded by the large cation size (Ba2+ and Ca2+) due to the limited diffusion of pyrolysis vapours to the active sites. Ba-exchanged red-mud catalysts reduced the content of carboxylic acids in the bio-oil to 1.8 % while maintained a high yield of the organic fraction (34 %). Ca-exchanged red-mud catalysts produced the lowest fraction of oxygenated compounds (35.1 %); however, the organic phase yield was as low as 23.6 %. The modified red-mud catalysts reduced the fraction of oxygenated compounds from 69.9-35.1% during the biomass-plastic co-pyrolysis. Herein, the defects and surface oxygen functionalities of multi-walled carbon nanotubes (MWCNTs) derived from a solid state reaction are demonstrated to be effective in the activation of peroxymonosulfate (PMS) for organic pollutant degradation. The catalytic activity of defective, oxygen-functionalized CNTs (dCNTs) is much better than bare CNTs, which stems from many active sites on the CNT surface, including structural defects and carbonyl functional groups, and excellent electrical conductivity. Furthermore, the effect of several operational factors and water conditions on the degradation rate of the targeted pollutant and material stability are comprehensively evaluated for the practical application of the dCNT/PMS-coupled process. The underlying catalytic mechanism in dCNTs is expected to take place via nonradical pathway and radical-induced oxidation where surface-bound radicals play a more dominant role than free radicals. The defect and oxygen functional group tuning strategy provides an effective methodology for the development of advanced carbon catalysts in Fenton-like reactions.