Vilhelmsenmays5887
N-methyl-d-aspartate (NMDA) application has conventionally been used to activate spinal networks to induce locomotion in spinalized animals. We recently described an alternative approach in which application of continuous blue light activates channelrhodopsin-2 in vesicular glutamate transporter 2a (vglut2a)-expressing spinal neurons to produce organized, rhythmic locomotor activity in spinally-transected larval zebrafish. This technique arguably enhances research validity, because endogenous glutamate is released into existing synapses instead of activating only a subset of glutamatergic (NMDA) receptors with an exogenous compound. Here, we explored the viability of this approach in the context of using it for longer-term experiments. Fictive swimming was induced through repetitive application of 10-s blue light stimuli to spinalized preparations for up to 60 min at intervals of 1, 3, or 15 min. Locomotor activity was maintained throughout the experimental timecourse, demonstrating the robustness of the system. Although locomotor bursts remained organized into episodes of activity, the number of bursts elicited during each successive stimulus decreased. This was in contrast to NMDA bath application, in which bursts became less episodically organized while the overall number of bursts remained unchanged. The efficacy of the repetitive optogenetic stimulation paradigm was demonstrated through application of exogenous dopamine, which reversibly decreased the number of bursts produced per stimulus compared with untreated preparations. Finally, increasing the stimulus interval to 15 min lessened, but did not eliminate locomotor fatigue from repetitive activation. Altogether, we established repetitive optogenetic stimulation of vglut2a-expressing neurons as a viable alternative to NMDA application for activation of the zebrafish spinal locomotor network.Left ventricular hypertrophy (LVH) is an important risk factor for cardiovascular morbidity and mortality in hypertensives. Therefore, early identification of at-risk patients is necessary. The objective of this study was to estimate the risk of LVH among Chinese hypertensives by designing a nomogram. 832 hypertensives were divided into two groups based on the presence of LVH. The least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression were successively applied for optimal variable selection and nomogram construction. Discrimination power, calibration, and clinical usefulness were evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis. Internal validation was performed using the bootstrap method. The nomogram included five predictors, namely gender, duration of hypertension, age, body mass index (BMI), and systolic blood pressure. The area under the ROC curve (AUC) was 0.724 (95% CI 0.687-0.761), indicating moderate discrimination. The calibration curve showed an excellent agreement between the predicted LVH and the actual LVH probability. The risk threshold between 5% and 72% according to the decision curve analysis, and the nomogram is clinically beneficial. Internal validation by bootstrapping with 1000 samples showed a good C-index of 0.715, which suggested that the predictive abilities for the training set and testing set were in consistency. Our study proposed a nomogram that can be utilized to assess the LVH risk rapidly for Chinese hypertensives. This tool could be useful in identifying patients at high risk for LVH. Further studies are required to ascertain the stability and applicability of this nomogram.The Asinger multicomponent reaction is a versatile synthetic tool which gives access to multiple drug-like scaffolds such as 3-thiazolines. The diversity and easy access of its starting materials, its operational simplicity combined with mild conditions and relatively good yields, renders the Asinger reaction, today more than ever, a cornerstone not only in heterocyclic chemistry and modern synthesis but also in medicinal chemistry. In this review, we perform a thorough analysis of the scope and limitations on the different reaction variants with their starting materials, the three-dimensional solid-state conformations of the Asinger derivatives, and we underline and classify all the major post-modifications that have been described. In addition, we report all the major applications in drug discovery projects.Histological analysis of biological tissues by mechanical sectioning is significantly time-consuming and error-prone due to loss of important information during sample slicing. In the recent years, the development of tissue clearing methods overcame several of these limitations and allowed exploring intact biological specimens by rendering tissues transparent and subsequently imaging them by laser scanning fluorescence microscopy. In this review, we provide a guide for scientists who would like to perform a clearing protocol from scratch without any prior knowledge, with an emphasis on DISCO clearing protocols, which have been widely used not only due to their robustness, but also owing to their relatively straightforward application. Proteasome cleavage We discuss diverse tissue-clearing options and propose solutions for several possible pitfalls. Moreover, after surveying more than 30 researchers that employ tissue clearing techniques in their laboratories, we compiled the most frequently encountered issues and propose solutions. Overall, this review offers an informative and detailed guide through the growing literature of tissue clearing and can help with finding the easiest way for hands-on implementation.Autism spectrum disorder (ASD) is diagnosed much more often in males than females. This male predominance has prompted a number of studies to examine how sex differences are related to the neural expression of ASD. Different theories, such as the "extreme male brain" theory, the "female protective effect" (FPE) theory, and the gender incoherence (GI) theory, provide different explanations for the mixed findings of sex-related neural expression of ASD. This study sought to clarify whether either theory applies to the brain structure in individuals with ASD by analyzing a selective high-quality data subset from an open data resource (Autism Brain Imaging Data Exchange I and II) including 35 males/35 females with ASD and 86 male/86 female typical-controls (TCs). We examined the sex-related changes in ASD in gray matter asymmetry measures (i.e., asymmetry index, AI) derived from voxel-based morphometry using a 2 (diagnosis ASD vs. TC) × 2 (sex female vs. male) factorial design. A diagnosis-by-sex interaction effect was identified in the planum temporale/Heschl's gyrus (i) compared to females, males exhibited decreased AI (indicating more leftward brain asymmetry) in the TC group, whereas AI was greater (indicating less leftward brain asymmetry) for males than for females in the ASD group; and (ii) females with ASD showed reduced AI (indicating more leftward brain asymmetry) compared to female TCs, whereas there were no differences between ASDs and TCs in the male group.