Rosakearney2538

Z Iurium Wiki

Verze z 31. 12. 2024, 14:30, kterou vytvořil Rosakearney2538 (diskuse | příspěvky) (Založena nová stránka s textem „In this work, we perform the numerical investigation of the performance of the small optical reservoir computing (RC) systems with four neurons using the c…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this work, we perform the numerical investigation of the performance of the small optical reservoir computing (RC) systems with four neurons using the commercial software for optical fiber communication system. The small optical RC system consists of the components of the optical fiber communication. The nonlinear function which is required in RC is provided by the erbium-doped optical fiber amplifiers (EDFA). We demonstrate that the EDFA should be operated in the saturated or non-linear regime to obtain a better performance of the small optical RC system. The performance of the small optical RC systems for different topological neuron structures is investigated. The results show that the interconnection between the neurons could offer a better performance than the systems without interconnection between the neurons. Moreover, the input signals with different noise levels are launched into the systems. The results show that the small optical RC system can classify the noisy input optical waveforms even when the signal-to-noise ratio is as low as - 2.55 dB.Cardiac myocytes have multiple cell autonomous mechanisms that facilitate stabilization and repair of damaged sarcolemmal membranes following myocardial injury. Dysferlin is a protein which facilitates membrane repair by promoting membrane resealing. Although prior studies have shown that dysferlin-deficient (Dysf-/-) mouse hearts have an impaired recovery from acute ischemia/reperfusion (I/R) injury ex vivo, the role of dysferlin in mediating the recovery from myocardial injury in vivo is unknown. Here we show that Dysf-/- mice develop adverse LV remodeling following I/R injury secondary to the collateral damage from sustained myocardial inflammation within the infarct zone. Backcrossing Dysf-/- mice with mice lacking signaling through the Toll-Interleukin 1 Receptor Domain-Containing Adaptor Protein (Tirap-/-), attenuated inflammation and abrogated adverse LV remodeling following I/R injury. Subsequent studies using Poloxamer 188 (P188), a membrane resealing reagent, demonstrated that P188 did not attenuate inflammation nor prevent adverse LV remodeling in Dysf-/- mice following I/R injury. Viewed together these studies reveal a previously unappreciated role for the importance of membrane sealing and the resolution of inflammation following myocardial injury.The neonatal heart possesses the ability to proliferate and the capacity to regenerate after injury; however, the mechanisms underlying these processes are not fully understood. Melatonin has been shown to protect the heart against myocardial injury through mitigating oxidative stress, reducing apoptosis, inhibiting mitochondrial fission, etc. In this study, we investigated whether melatonin regulated cardiomyocyte proliferation and promoted cardiac repair in mice with myocardial infarction (MI), which was induced by ligation of the left anterior descending coronary artery. We showed that melatonin administration significantly improved the cardiac functions accompanied by markedly enhanced cardiomyocyte proliferation in MI mice. In neonatal mouse cardiomyocytes, treatment with melatonin (1 μM) greatly suppressed miR-143-3p levels. Silencing of miR-143-3p stimulated cardiomyocytes to re-enter the cell cycle. On the contrary, overexpression of miR-143-3p inhibited the mitosis of cardiomyocytes and abrogated cardiomyocyte mitosis induced by exposure to melatonin. Moreover, Yap and Ctnnd1 were identified as the target genes of miR-143-3p. In cardiomyocytes, inhibition of miR-143-3p increased the protein expression of Yap and Ctnnd1. Melatonin treatment also enhanced Yap and Ctnnd1 protein levels. Furthermore, Yap siRNA and Ctnnd1 siRNA attenuated melatonin-induced cell cycle re-entry of cardiomyocytes. We showed that the effect of melatonin on cardiomyocyte proliferation and cardiac regeneration was impeded by the melatonin receptor inhibitor luzindole. Silencing miR-143-3p abrogated the inhibition of luzindole on cardiomyocyte proliferation. In addition, both MT1 and MT2 siRNA could cancel the beneficial effects of melatonin on cardiomyocyte proliferation. Collectively, the results suggest that melatonin induces cardiomyocyte proliferation and heart regeneration after MI by regulating the miR-143-3p/Yap/Ctnnd1 signaling pathway, providing a new therapeutic strategy for cardiac regeneration.Machine learning is a tool that allows machines or intelligent systems to learn and get equipped to solve complex problems in predicting reliable outcome. The learning process consists of a set of computer algorithms that are employed to a small segment of data with a view to speed up realistic interpretation from entire data without extensive human intervention. Here we present an approach of supervised learning based on artificial neural network to automate the process of delineating structural distribution of Mass Transport Deposit (MTD) from 3D reflection seismic data. check details The responses, defined by a set of individual attributes, corresponding to the MTD, are computed from seismic volume and amalgamated them into a hybrid attribute. This generated new attribute, called as MTD Cube meta-attribute, does not only define the subsurface architecture of MTD distinctly but also reduces the human involvement thereby accelerating the process of interpretation. The system, after being fully trained, quality checked and validated, automatically delimits the structural geometry of MTDs within the Karewa prospect in northern Taranaki Basin off New Zealand, where MTDs are evidenced.An amendment to this paper has been published and can be accessed via a link at the top of the paper.We investigated the validity of panoramic ultrasound (US) compared to magnetic resonance imaging (MRI) for the assessment of hamstrings cross-sectional area (CSA) and volume. Hamstrings CSA were acquired with US (by an expert operator) at four different sites of femur length (FL) in 85 youth competitive alpine skiers (14.8 ± 0.5 years), and successively compared to corresponding scans obtained by MRI, analyzed by a trained vs. a novice rater. The agreement between techniques was assessed by Bland-Altman analyses. Statistical analysis was carried out using Pearson's product moment correlation coefficient (r). US-derived CSA showed a very good agreement compared to MRI-based ones. The best sites were 40% FL (0 = mid patellar point) for biceps femoris long head (r = 0.9), 50% for semitendinosus (r = 0.9), and 30% for semimembranosus (r = 0.86) and biceps femoris short head (BFsh, r = 0.8). US-based vs. MRI-based hamstrings volume showed an r of 0.96. Poorer r values were observed for the novice compared to the trained rater, with the biggest difference observed for BFsh at 50% (r = 0.

Autoři článku: Rosakearney2538 (Bloom Christophersen)